EXHIBIT 66

UNITED STATES National Residue Program

2009 RESIDUE SAMPLE RESULTS

United States Department of Agriculture Food Safety and Inspection Service Office of Public Health Science

May 2011

AR0001665

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	9
EXECUTIVE SUMMARY	11
ACRONYMS	14
INTRODUCTION	16
SAMPLING PLANS OF THE U.S. NATIONAL RESIDUE PROGRAM	18
Domestic Sampling Plan	18
Scheduled Sampling	18
Import Reinspection Sampling Plan	19
Estimated Livestock, Poultry, and Egg Products	21
Table 1. 2009 Estimated Relative Consumption Data by Production Class	21
Figure 1. 2009 Estimated Relative Consumption Data by Production Class	22
Figure 2. U.S. NRP Domestic Scheduled Samples Flow Chart	24
Inspector-Generated Sampling	26
Figure 3. 2009 U.S. NRP Sampling Program: Summary Results	27
Figure 4. 2009 U.S. NRP Sampling Program: Detailed Results	28
SUMMARY OF DOMESTIC DATA	29
Scheduled Sampling	29
Sampling for Exposure Assessments	29
Figure 5. 2009 Scheduled Samples: Residue Violations	29
Production Class	30
Table 2. Total Number of Samples by Production Class	30
Figure 6. Total Number of Samples and Violation Rate by Production Class	31
Table 3. Total Number of Samples by Compound Class	32
Figure 7. Total Number of Samples and Violation Rate by Compound Class	33
Exploratory Assessments	34
Inspector-Generated Sampling	34
Sampling for Suspect Animals	34
Figure 8. Residue Violations 2009 Inspector-Generated Sampling Plan, Suspect	
Animals	34
Sampling for Suspect Populations (Bob veal)	35
Show Animals	35

Table 4. Number of Samples Tested by Production Class	36
Table 5. Number of Samples Tested by Compound Class	37
Summary of Import Data	38
Figure 9. 2009 Imported Meat and Poultry Products by Country (% of total net	
weight)	38
Figure 10. 2009 Imported Meat and Poultry Products by Species and Type (% of total	
net weight	38
Figure 11. 2009 Imported Meat and Poultry Products by Species (% of total net	
weight	38
DOMESTIC SAMDI INC DESULTS	
DOMESTIC SAMPLING RESULTS	39
Scheduled Sampling-Sampling for Exposure Asse3ssmetns, Compound Class Data	39
Antibiotics	40
Table 6a. Antibiotics Summary (7-plate bioassay)	40
Table 6b. Antibiotics Residue Levels	41
Figure 12. Antibiotics Summary	42
Table 6c. Antibiotics Violations Report	43
Arsenic	44
Table 7a. Arsenic Summary	44
Table 7b. Arsenic Residue Levels	45
Figure 13. Arsenic Summary	45
Avermectins (Ivermectin and Doramectin) and Milbemycins (Moxidectin)	46
Table 8a. Avermeetins and Milberry Summary	46
Table 8b. Avermeetins and Milbemycins Residue Levels	47
Table 8c. Avermectins Violations Report	47
Figure 14. Avermectins and Milbemycins Summary	48
beta-Agonists (Clenbuterol, Cimaterol, Ractopamine, Salbutamol, and Zilpaterol)	49
Table 9a. beta-Agonists Summary	49
Table 9b. beta-Agonists Residue Levels	49
Figure 15. beta-Agonists Summary	50
Carbadox	50
Table 10a. Carbadox Summary	50
Table 10b. Carbadox Residue Levels	51
Table 10c. Carbadox Violations Report	51
Figure 16. Carbadox Summary	51
Chloramphenicol	52
Table 11a. Chloramphenicol Summary	52
Table 11b. Chloramphenicol Residue Levels	52
Figure 17. Chloramphenicol Summary	53

.

Chlorinated Hydrocarbons and Chlorinated Organophosphates	54
Table 12a. Chlorinated Hydrocarbons and Chlorinated Organophosphates Summary	. 54
Table 12b. Chlorinated Hydrocarbons and Chlorinated Organophosphates Residue	
Levels	. 54
Table 12c. Chlorinated Hydrocarbons and Chlorinated Organophosphates Violations	
Report	. 55
Figure 18. Chlorinated Hydrocarbons and Chlorinated Organophosphates Summary	. 55
Florfenicol	. 56
Table 13a. Florfenicol Summary	. 56
Table 13b. Florfenicol Residue Levels	. 56
Table 13c. Florfenicol Violations Report	. 57
Figure 19. Florfenicol Summary	. 57
Flunixin	. 58
Table 14a. Flunixin Summary	. 58
Table 14b. Flunixin Residue Levels	. 58
Figure 20. Flunixin Summary	. 58
Nitrofurans	. 59
Table 15a. Nitrofurans Summary	. 59
Table 15b. Nitrofurans Residue Levels	. 59
Table 15c. Nitrofurans Violations Report	. 60
Figure 21. Nitrofurans Summary	. 60
Nitroimidazoles	. 61
Table 16a. Nitroimidazoles Summary	. 61
Table 16b. Nitroimidazoles Residue Levels	. 61
Figure 22. Nitroimidazoles Summary	. 61
Sulfonamides	. 62
Table 17a. Sulfonamides Summary	. 62
Table 17b. Sulfonamides Residue Levels	. 63
Table 17c. Sulfonamides Violations Report	63
Figure 23. Sulfonamides Summary	. 64
Thyreostats	. 65
Table 18a. Thyreostats Summary	. 65
Table 18b. Thyreostats Residue Levels	. 65
Trenbolone	. 66
Table 19a. Trenbolone Summary	. 66
Table 19b. Trenbolone Residue Levels	. 66
Figure 24. Trenbolone Summary	. 66
Zeranol	. 67
Table 20a. Zeranol Summary	. 67
Table 20b. Zeranol Residue Levels	. 67
Figure 25. Zeranol Summary	. 67
-	

Table 21.	Distribution of Non-Violative Positive Samples by Product Class	. 68
Figure 20. Class and	Product Class 2009 Domestic Scheduled Sampling	60
		. 09
Scheduled Sam	ipling — Sampling for Exposure Assessments, Production Class Data	. 70
Table 22a	Poof Cours Summer	. /1
Table 22a.	Beef Cows Builling y	. /1
Table 220.	Poof Cover Violations Deport	. /1
Figure 27	Beef Cows Violations Report	. 72
Pigure 27.	Beer Cows Summary	. 72 72
Duars/Stags.	Boars/Stags Summary	. 73 77
Table 23a.	Boars/Stags Summary	د/ . در
Figure 28	Boars/Stags Summary	. 13
Boh Veal	Dours Sugs Summary	. 14 75
Table 24a	Boh Veal Summany	. 75 75
Table 24a.	Bob Veal Besidue Levels	כו. דר
Table 240.	Bob Veal Violations Report	در . ۲۶
Figure 29	Bob Veal Summary	. 70 76
Bulls		יי. דד
Table 25a	Bulls Summary	.,, 77
Table 25b.	Bulls Residue Levels	. , , 77
Table 25c.	Bulls Violations Report	. 77 78
Figure 30.	Bulls Summary	. 78 78
Dairy Cows.		. 70 79
Table 26a.	Dairy Cows Summary	. 79 79
Table 26b.	Dairy Cows Residue Levels.	. 79
Table 26c.	Dairy Cows Violations Report	. 80
Figure 31.	Dairy Cows Summary	. 80
Ducks		. 81
Table 27a.	Ducks Summary	. 81
Table 27b.	Ducks Residue Levels	. 81
Figure 32.	Ducks Summary	. 81
Formula-fed	Veal	. 82
Table 28a.	Formula-fed Veal Summary	. 82
Table 28b.	Formula-fed Veal Residue Levels	. 82
Table 28c.	Formula-fed Veal Violations Report	. 83
Figure 33.	Formula-fed Veal Summary	. 83
Geese	- -	. 84
Table 29a.	Geese Summary	. 84

Goats	84
Table 30a. Goats Summary	84
Table 30b. Goats Residue Levels	85
Table 30c. Goats Violations Report	85
Figure 34. Goats Summary	85
Heavy Calves	86
Table 31a. Heavy Calves Summary	86
Table 31b. Heavy Calves Residue Levels	86
Table 31c. Heavy Calves Violations Report	87
Figure 35. Heavy Calves Summary	87
Heifers	88
Table 32a. Heifers Summary	88
Table 32b. Heifers Residue Levels	88
Figure 36. Heifers Summary	88
Lambs	89
Table 33a. Lambs Summary	89
Table 33b. Lambs Residue Levels	89
Figure 37. Lambs Summary	89
Market Hogs	90
Table 34a. Market Hogs Summary	90
Table 34b. Market Hogs Residue Levels	90
Table 34c. Market Hogs Violation Report	91
Figure 38. Market Hogs Summary	91
Mature Chickens	92
Table 35a. Mature Chickens Summary	92
Table 35b. Mature Chickens Residue Levels	92
Figure 39. Mature Chicken Summary	92
Mature Sheep	93
Table 36a. Mature Sheep Summary	93
Table 36b. Mature Sheep Residue Levels	93
Figure 40.Mature Sheep Summary	93
Mature Turkeys	94
Table 37a. Mature Turkeys Summary	94
Table 37b. Mature Turkeys Residue Levels	94
Figure 41. Mature Turkeys Summary	94
Non-formula-Fed Veal	95
Table 38a. Non-formula-Fed Veal Summary	95
Table 38b. Non-formula-Fed Veal Residue Levels	95
Table 38c. Non-formula-Fed Veal Violations Report	96
Figure 42. Non-formula-Fed Veal Summary	96

Rabbits	
Table 39a. Rabbits Summary	
Table 38b. Rabbits Residue Levels	
Roaster Pigs	
Table 40a. Roaster Pigs Summary	
Table 40b. Roaster Pigs Residue Levels	
Table 40c. Roaster Pigs Violations Report	
Figure 43. Roaster Pigs Summary	
Sows	100
Table 41a. Sows Summary	100
Table 41b. Sows Residue Levels	100
Figure 44. Sows Summary	100
Steers	101
Table 42a. Steers Summary	101
Table 42b. Steers Residue Levels	101
Table 42c. Steers Violation Report	102
Figure 45. Steers Summary	102
Young Chickens	103
Table 43a. Young Chickens Summary	103
Table 43b. Young Chickens Residue Levels	103
Figure 46. Young Chickens Summary	103
Young Turkeys	104
Table 44a. Young Turkeys Summary	104
Table 44b. Young Turkeys Residue Levels	104
Figure 47. Young Turkeys Summary	104
Scheduled Sampling — Exploratory Assessments	
Table 45. Number of Positive and Non-detect Dairy Cows Samples Analyzed f	or
Cadmium and Lead, 2009 Exploratory Assessments Results	
Table 46. Statistical Analysis of the Cadmium and Lead Levels in Kidneys and	
Muscles from Dairy Cows, 2009 Exploratory Assessments Results	
Inspector Concrated Sampling	107
Suspect Animals	
Fast Antimicrobial Screen Test (EAST)	
Kidney Inhibition Swah (KISTM) Test	
COLIGEN	
State (State or Government Agency Testing)	
Table 47 Summary Results 2009 Inspector-Generated Sampling (by Project ID	······ 108
Table 48 Distribution of Residue Violations Chemical Residue and Animal Cl	') 109 Iacc
hy Project ID	.ass 110
Figure 48 Distribution of Residue Violations by Project ID and Selected Chemic	110 ical
Residue	111

Figure 49. Location of FAST Violations by U.S. States	112
Table 49. FAST Violations by Plant State vs. Production State Matching Status	113
Figure 50. Location of KIS [™] Violations by U.S. States	114
Table 50. KIS TM Violations by Plant State vs. Produce State Matching Status	115
Figure 51. Location of COLLGEN Violations by U.S. States	116
Table 51. COLLGEN Violations by Plant State vs. Production State Matching Sta	atus 117
Table 52. Distribution of Residue Violations, Chemical Residue, and Status	
(Production vs. Plant) U.S. States by Project ID	118
Table 53. Distribution of Residue Violations, Chemical Residue, and selected U.S.	5.
States by Project ID	119
Table 54. Distribution of Residue Violations, Animal Class, and Selected U.S. Sta	ates 120
Table 55. Selected Slaughter Classes Panked by Volume (and Derecenters) for	120
selected U.S. States	121
Table 56. Distribution of Non-Violative Positive Residue by Production Class and	d
Chemical Residue	122
Table 57. Distribution of Non-Violative Positive Samples by Project ID	123
Figure 52. Distribution of Non-Violative Positive Samples by Project ID and	
Selected Chemical Residue	124
Inspector-Generated Sampling (continue)	125
Suspect Populations	125
Fast Antimicrobial Screen Test (FAST) on Bob Veal	125
Kidney Inhibition Swab (KIS [™]) Test on Bob Veal	125
Show Animals	125
Import Reinspection Results	126
Table 58. Normal Reinspection Results.	126
Table 59. Increased Reinspection Results	132
Table 60 Intensified Reinspection Results	132
	152
APPENDIX I: Analytical Methods	AI-1
Table AI. Analytical Methods Table All	[-2 - AI-7
APPENDIX II: Statistical Table	AII-1
Table AII. Statistical Table	AII-2
APPENDIX III: Summary of U.S. NRP Scheduled Sampling Data from 2006 to 200)8AIII-1
Antibiotics (7-plate bioassay)	AIII-2
Arsenic	AIII-4
Avermectins	AIII-5
beta-Agonists-1	
6	

APPENDIX II: Summary of U.S. NRP Scheduled Sampling Data from 2006-2008 (Continue) (Ractopamine) AIII-6 Carbadox AIII-7 Chloramphenicol AIII-7 Chlorinated Hydrocarbons, Chlorinated Organophosphates, Organophosphates, Pyrethroids, Environmental Contaminants Florfenicol AIII-10 Flunixin AIII-10 Melengestrol Acetate (MGA) AIII-11 Nitrofurans AIII-11 Nitroimidazoles AIII-12 Thyreostats AIII-13 Zeranol AIII-13

ACKNOWLEDGEMENTS

FSIS would like to acknowledge Dr. Alice Thaler, Senior Director for Program Services, Office of Public Health Science (OPHS); Ms. Janell Kause, Risk Assessment Division Director; and Dr. Patty Bennett, Chemical Residue Risk Branch Chief, Risk Assessment Division; who advised the working team for this project. FSIS would like to thank Ms. Gail Graves and Ms. Lily Thienard, Office of Chief Information Officer (OCIO). In addition, FSIS would like to extend gratitude to Ms. Margaret O'Keefe, Chemical Residue Risk Branch, Risk Assessment Division, and a special thanks to Dr. Deep Saini from the Office of Data Integration and Food Protection/Data Analysis and Integration Group (ODIFP/DAIG) for his technical and data support.

FSIS would like to thank the Agency's field inspection personnel who collected and submitted domestic residue samples. The 2009 sampling and testing program operations were carried out with the support of 15 FSIS Office of Field Operations (OFO) district offices located in Alameda, CA; Albany, NY; Atlanta, GA; Beltsville, MD; Chicago, IL; Dallas, TX; Denver, CO; Des Moines, IA; Jackson, MS; Lawrence, KS; Madison, WI; Minneapolis, MN; Philadelphia, PA; Raleigh, NC; and Springdale, AR. FSIS also would like to thank the FSIS Import Inspection Division, Office of International Affairs (OIA) that oversees 117 import facilities at U.S. ports of entry to ensure that imported meat, poultry, and egg products that are sent into U.S. commerce are safe, wholesome, and properly labeled.

Additionally, FSIS would like to thank the agency's laboratory staff located at Eastern Laboratory in Athens, GA; the Midwestern Laboratory in St. Louis, MO; and the Western Laboratory in Alameda, CA, who prepared and analyzed the residue samples, and documented the results. FSIS Field Services Laboratories coordinate and conduct laboratory analytical services in support of the Agency's strategy to maintain food safety in meat, poultry, and egg products along the farm-to-table continuum.

Furthermore, FSIS would like to acknowledge the members of the Surveillance Advisory Team (SAT), which includes representatives from the Food and Drug Administration (FDA), the Centers for Disease Control and Prevention (CDC), the Environmental Protection Agency (EPA), the Animal and Plant Health Inspection Service (APHIS), the Agricultural Marketing Service (AMS), and the Agricultural Research Service (ARS), for their extensive contributions to the U.S. National Residue Program. Finally, FSIS would like to thank all of the agencies that submitted feedback and recommendations on enhancing the format and the content of the National Residue Data publication (i.e., the *Red Book*).

CONTACTS AND COMMENTS

The Chemical Residue Risk Branch (CRRB), Risk Assessment Division (RAD), Office of Public Health Science, FSIS, USDA, coordinated this effort and is responsible for the publication of this material. Questions about the U.S. NRP should be directed to:

USDA, FSIS, RAD/CRRB 1400 Independence Avenue, SW 333 Aerospace Center Washington, D.C. 20250-3700 Telephone: (202) 690-6409 Fax: (202) 690-6565 E-mail: <u>ChemicalResidue@fsis.usda.gov</u> Website: <u>www.fsis.usda.gov/Science/Chemistry/index.asp</u>

PRINCIPAL AUTHORS:

Mr. Naser Abdelmajid USDA/FSIS/OPHS/RAD/CRRB Dr. Doritza Pagán-Rodríguez USDA/FSIS/OPHS/RAD/CRRB

EXECUTIVE SUMMARY

2009 United States National Residue Program Data

The 2009 United States National Residue Program (U.S. NRP) examined 128 chemical compounds, including 78 veterinary drugs, 45 pesticides, and five environmental contaminants. All chemical compounds were analyzed at one of three FSIS International Standardization Organization (ISO)-accredited laboratories: the Eastern Laboratory in Athens, GA; the Midwestern Laboratory in St. Louis, MO; and the Western Laboratory in Alameda, CA.

The majority of violations detected by the 2009 domestic scheduled sampling plan were illegal levels of approved animal drugs, particularly sulfonamides and antibiotics, used to prevent or treat bacterial infections. Most of these violations were confined to a relatively small percentage of production classes that make up the meat and poultry supply. Most drug-residue violations result from an inadequate withdrawal time for the drugs to clear the animal's system. Detected illegal residues are usually concentrated in kidney and liver tissue rather than in muscle meat.

The U.S. NRP consists of two sampling programs: domestic and import. The domestic sampling program consists of scheduled sampling and inspector-generated sampling. The results from the sampling program showed 1,528 residue violations; there were 21 violations from the scheduled sampling (< 2%) and 1,507 violations from the inspector-generated program (~98%). The import program reported one violation out of 3,872 samples.

FSIS field personnel collected 17,241 samples under the domestic scheduled sampling program, representing 60 compounds in 23 animal product classes. No residues were detected in approximately 97% of the domestic scheduled samples. The scheduled sampling program reported 21 residue violations (0.12%) in the following: one beef cow, two bob veal, two bulls, one dairy cow, one formula fed veal, one goat, one heavy calf, one market hog, five non-formula fed veal, four roaster pigs, and two steers. Of the 21 residue violations, six were attributed to sulfas, five were attributed to antibiotics, two each were attributed to avermectins, carbadox, four were attributed to florfenicol, and one each were attributed to nitorfurans, and pesticide, respectively.

The scheduled sampling program identified 473 samples with non-violative positive residue levels (i.e., samples tested positive for residue, but below the tolerance level) — this constitutes 2.74% of all samples taken. Among individual chemical compound classes, the percentage of samples with detectable residues ranged from 0 to 6.48%. The chemical compound class accounting for most of the samples with detectable residues was tetracycline (23% of the 473 non-violative positive samples). Neomycin ranked the second highest (21%) and arsenic ranked third (18%). Non-violative residue samples were detected most frequently in the following production classes: roaster pigs, young chickens (all arsenic), and market hogs.

Under the inspector-generated program, FSIS field personnel collected 151,233 samples. FSIS labs reported 1,507 residue violations in 1,105 animals (a single animal may have multiple violations because multiple tissues can be submitted from each animal and multiple residue analyses may be conducted on the same sample) from the following product classes: 53 beef cows, nine bulls, 250 bob veal, 750 dairy cows, two formula fed veal, four goats, 14 heavy calves, 11 heifers, two non-formula fed veal, one sow, eight steers. Penicillin was the chemical with the highest number and percentage of residue violations across the inspector-generated program (379 or 25%). Additionally, FSIS labs reported flunixin (242 or 16%) and sulfadimethoxine (177 or 11%) violations under the inspector-generated program.

Furthermore, there were 3,040 samples reported as non-violative positives. The highest percentage of non-violative positive samples was attributed to neomycin (41%). Tetracycline was the second highest chemical detected (16%) and dihydrostreptomycin was ranked third (13%). The top three animal production classes per number of non-violative positive samples include bob veal, dairy cows, and beef cows.

The inspector-generated samples are screened in-plant using either the Fast Antimicrobial Screening Test (FAST) or the Kidney Inhibition Swab Test (KIS[™]) screening method. Positive samples are sent to an FSIS laboratory for confirmation. Alternatively, samples may be sent directly from the plant to the FSIS laboratories for analysis (e.g., COLLGEN). FAST testing kits detected 63%, or 951 of 1,507 total inspector-generated violation samples, compared to 36%, or 535 of 1,507 violations, detected by the KIS[™] test kits. Out of 3,040 non-violative positive samples analyzed under inspector-generated samples, 1,792 (59%) were associated with KIS[™], compared to 1,170 (39%) detected using the FAST screen.¹

Regarding conclusions about violations in specific states or regions, it is important to note two points. First, violations within a state are likely correlated with the number and type of animals slaughtered. Second, food animals are not always reared in a single state or region. The U.S. NRP database discloses the "plant state" (i.e., plant location by U.S. state) and the "produce state" (i.e., the last state in which the animal lived prior to being sent to slaughter).

Overall, 54% of the FAST violations² had a matching status between the produce state and the plant state. The highest FAST violations occurred in California, Wisconsin, and Pennsylvania. Twenty-seven % of the FAST violations showed no matching status and 19% of the FAST violations lacked the produce state information (mostly in <u>Pennsylvania</u>). The plant state and produce state were matched for several of the FAST violation states, except in Georgia, New Jersey, and South Carolina. A correlation is likely between the number of violations and the slaughter volume per animal class by state.

¹ KISTM was first implemented in July 2009 and limited to bovine plants.

² "Violations" are lab-confirmed.

Half of the Wisconsin FAST violations showed no matching status between the produce state and the plant states.

Similarly, 74% of the KISTM violations matched between the produced state and the plant state. The highest KISTM violation occurred in Ohio, California, and Wisconsin respectively. Sixteen % of the KISTM violations showed no matching status, while 10% of the KISTM violations lacked the produced state information (mainly in <u>Pennsylvania</u>). The plant state and the produced state were matched for several of the KISTM violations states except, in South Carolina and Washington. The KISTM state violations appear to correlate to the state slaughter volume per animal class. Half of the Wisconsin KISTM violations showed no matching between the produced state and the plant states.

FSIS plans and administers a national import reinspection program. After the U.S. Customs Service and the USDA Animal and Plant Health Inspection Service (APHIS) requirements are met, shipments imported into the United States must be reinspected by FSIS at an approved import inspection facility. FSIS inspectors carry out reinspection in approximately 117 official import establishments. The import sampling program analyzed approximately 121 chemical residues from 13 compound classes of veterinary drugs and pesticides. Of the 3,872 samples analyzed, one violation of avermectin was detected. The samples came from products that were imported from 28 countries eligible for exportation to the United States.

FSIS continually strives to improve methods for reporting the U.S. National Residue Program data. These reports are publicly available online on the FSIS website at: www.fsis.usda.gov/Science/Chemistry/index.asp. Additional copies of the annual report may be obtained by calling FSIS at (202) 690-6409.

ACRONYMS

- ADRS Automated Disposition Reporting System
- AIIS Automated Imported Information System
- AMS Agriculture Marketing Service

APHIS - Animal and Plant Health Inspection Service

ARS – Agriculture Research Service

CDC - Centers for Disease Control and Prevention

CHCs – Chlorinated hydrocarbons

- **COPs** Chlorinated organophosphates
- COLLGEN Inspector Generated Samples sent directly to the laboratory

CRRB – Chemical Residue Risk Branch

CVM – Center for Veterinary Medicine

DCA – Desfuroylceftiofur Acetamide

DCCD – Desfuroylceftiofur Cysteine Disulfide

DW – FSIS Data Warehouse

ECD – Electron Capture Detection

ELISA - Enzyme Linked Immunosorbent Assay

FAST – Fast Antimicrobial Screening Test

FDA – Food and Drug Administration

FSIS – Food Safety and Inspection Service

EPA – Environmental Protection Agency

GC – Gas Chromatography

GPC – Gel Permeation Chromatography

HPLC – High performance liquid chromatography

HACCP - Hazard Analysis and Critical Control Points

IIC – Inspector in Charge

- **IID** Import Inspection Division
- IG Inspector Generated Sampling Plan
- KIS[™] Kidney Inhibition Swab Test
- LEARN Laboratory Electronic Application for Results Notification
- LIMS Laboratory Information Management System
- MARCIS Microbiological and Residue Computer Information System
- MDL Method Detection Limit
- MPL Minimum Proficiency Level
- NASS National Agricultural Statistics Service
- NRP National Residue Program (Domestic & Import)
- NSAID Non-Steroidal Anti-inflammatory Drug
- OCIO Office of the Chief Information Officer
- **OFO** Office of Field Operations
- **OPHS** Office of Public Health Science
- **PCBs** Polychlorinated biphenyls
- PHV Public Health Veterinarian
- **PPB** Parts per billion
- **PPM** Parts per million
- **RAD** Risk Assessment Division
- **RVIS** Residue Violation Information System
- SAT Surveillance Advisory Team
- STATE State or Government Agency Testing
- SHOW Show Animals
- SULFAS Sulfonamides compounds
- TLC Thin Layer Chromatography
- TOI Type of Inspection

INTRODUCTION

The 2009 United States National Residue Program (U.S. NRP) data summary (*Red Book*) provides the residue sampling results (domestic and import) for testing chemical compounds in food animals produced domestically or imported into the United States.

The U.S. NRP is a collaborative interagency program established to protect the public from harmful levels of chemical residues in meat, poultry, and egg products produced in or imported into the United States. The U.S. NRP is designed to: (1) provide a structured process for identifying and evaluating chemical compounds of concern in food animals; (2) analyze chemical compounds of concern; (3) collect and report results; and (4) provide appropriate regulatory follow-up of reports of violative levels of residues.

The Food Safety and Inspection Service (FSIS), the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA) are the federal agencies primarily involved in managing this program. The EPA and FDA have statutory authority for establishing residue tolerances through regulations that limit the quantity of a chemical for the protection of public health.¹ The FDA, under the Federal Food, Drug, and Cosmetic Act, establishes tolerances or action levels for veterinary drugs, food additives, and environmental contaminants. The EPA, under the Federal Insecticide, Fungicide, and Rodenticide Act (as modified by the Food Quality Protection Act), establishes tolerance levels for registered pesticides. Through the Federal Meat Inspection Act, the Poultry Products Inspection Act, and Egg Products Inspection Act, FSIS regulates the safety of meat, poultry, and egg products produced in federally inspected establishments or imported into the United States.

The U.S. NRP tests for chemical compounds, including approved (legal) and unapproved (illegal) veterinary drugs, pesticides, and hormones, as well as environmental compounds that may appear in meat, poultry, and egg products. FSIS, FDA, EPA, and other federal agencies, including USDA's Agricultural Research Service (ARS), USDA's Agricultural Marketing Services (AMS), and Centers for Disease Control and Prevention (CDC), create an annual sampling plan based on the previous U.S. NRP, information accumulated during investigations, and FDA veterinary drug inventories completed during on-farm visits. The agencies create and rank a list of chemical compounds for testing animals using mathematical algorithms that include variables for public health risk and regulatory concern. The agencies decide on the chemical compounds to test and the food animals to evaluate. FSIS laboratory capacity and analytical methods are considered when devising a final sampling plan, which is published every year as the U.S. NRP Scheduled Sampling Plan (*Blue Book*).

¹ Title 40 CFR includes tolerance levels established by EPA; Title 21 CFR includes tolerance levels established by FDA.

The FDA and cooperating state agencies investigate producers linked to residue violations. If a problem is not corrected, subsequent FDA visits could result in enforcement action, including prosecution. FSIS posts a Residue Violator Alert List on its website, listing the names and addresses of parties that the FDA has determined are responsible for more than one veterinary drug, pesticide, or other chemical residue violation during a 12-month period. The names and addresses of repeat violators remain on the FSIS website for 12 months following FDA confirmation.

Beginning in August 2009 and at the request of industry, FSIS updates the Same Source Supplier-Residue Violators List on a weekly basis with the establishments and producers associated with more than one violation on a rolling 12-month basis. This list varies from the Residue Violator Alert List because it allows industry to react in real time to current violations and contains a tally of all violations recorded during the 12-month period indicated. Because FSIS updates this list weekly, FDA may not have investigated or confirmed each violation. These lists provide helpful information to processors and producers working to avoid illegal levels of residues, serve as deterrents for violators, and enable FSIS and FDA to make better use of resources.

A chemical residue prevention program is essential to encourage the prudent use of veterinary drugs and pesticides. In the late 1990's, FSIS implemented the Hazard Analysis and Critical Control Points (HACCP) inspection system in all federally inspected establishments to verify chemical residue control. The HACCP regulation (9 CFR 417) requires slaughter and production establishments to identify all food safety hazards, including drug residues, pesticides, and chemical contaminants, that may occur before, during, and after entry into the establishment. The regulation determines preventive measures that the establishment can apply to control these hazards. FSIS takes regulatory action against establishments that do not have an adequate chemical residue control program in place.

SAMPLING PLANS OF THE U.S. NATIONAL RESIDUE PROGRAM

The U.S. NRP focuses on a domestic sampling plan and import reinspection. These plans are subdivided to facilitate the management of chemical residues, such as veterinary drugs, pesticides, and environmental contaminants, in meat, poultry, and egg products. The domestic sampling plan includes scheduled sampling and inspector-generated sampling. The import reinspection sampling plan is divided into normal sampling, increased sampling, and intensified sampling.

Domestic Sampling Plan

Scheduled Sampling

Under the scheduled sampling plans, inspectors randomly sample tissue from animals that pass ante-mortem inspection. FSIS generate scheduled sampling plans using FSIS Form 10,210-3. The development of scheduled sampling plans proceeds in the following manner: (1) identify which chemical compounds are of concern to food safety; (2) use algorithms to rank the selected chemical compounds; (3) pair these chemical compounds with appropriate food animal and egg products; and (4) establish the number of samples to be collected. At its annual meeting, the Surveillance Advisory Team (SAT) determines the compound/production class pairs.¹ FSIS calculates the number of samples needed for the scheduled sampling. Since the 2006 NRP, FSIS began sampling 230 or 300 animals for each compound/production class pair. This sampling rate assures a 90 percent and 95 percent probability, respectively, to detect residue violations if the violation rate is equal to or greater than 1 %. The resulting violation data verifies industry process controls and HACCP plans to control residues effectively. FSIS, FDA, and EPA review and make final adjustments to the sampling plan.

Scheduled sampling programs include:

Exposure Assessments²

Exposure Assessments:

- guide FSIS decision to condemn carcasses with violative levels of residues;
- guide FDA regulatory decisions for a sample containing violative levels of residues and to determine action against producers;
- guide industry decisions to retain product until the sample has been tested; and
- guide industry decisions to recall a product that was not retained while the sample was tested and found to contain violative levels of residue.

¹ Compound = chemical compounds; Production Class = food animals and egg products

² This sampling program provides data that could be used to conduct exposure assessments for chemical compounds in food animals and egg products.

Exploratory Assessments¹

Exploratory Assessments:

- reinvestigate animal populations from ongoing or previous exposure assessments if the violation rate is confirmed at one percent or greater;
- investigate animal populations when the compounds in question have no established tolerances; and
- respond to intelligence reports from the FDA/CVM field.

Inspector-Generated Sampling

Inspector-generated sampling is conducted by in-plant Public Health Veterinarians (PHVs) using FSIS Form 10,000-2 when the PHV suspects that an animal may have violative levels of chemical residues. Currently, inspector-generated sampling targets *individual suspect animals* and *suspect populations of animals*. When an inspector-generated sample is collected, the carcass is held pending the results of laboratory testing. If violative residues levels are confirmed, the carcass is condemned.

Sampling for Individual Suspect Animals and Suspect animal Populations

The in-plant inspector selects a carcass for sampling based on professional judgment and public health criteria². Currently, inspector-generated sampling targets *individual suspect animals* and suspect *populations of animals*. When an inspector-generated sample is collected, the carcass is held pending laboratory testing results. If violative residue levels are confirmed, the carcass is condemned.

Sampling for suspect animal populations is generally directed by an FSIS regulation, directive (e.g., FSIS Directive 10,800.1), or notice.

Import Reinspection Sampling Plan

All imported products are subject to reinspection. The Port-of-Entry Reinspection Program is a chemical residue-monitoring program conducted to verify the equivalence of inspection systems in exporting countries. Under this program, inspectors conduct one or more types of inspection (TOI) on every lot of product, namely meat, poultry, and egg products, before it enters the United States. The following are the three levels of chemical residue reinspection:

- Normal sampling is defined as random sampling from a lot;
- Increased sampling is defined as above-normal sampling as the result of an Agency management decision; and

¹ The exploratory assessments are sampling programs designed to target chemical compounds of public health concern.

² Outlined in FSIS Directives 10,800.1 and 10,220.3 and includes animal disease signs and symptoms, producer history, or results from random scheduled sampling.

• Intensified sampling is defined as occurring when a previous sample for a TOI failed to meet U.S. requirements.

For both normal and increased sampling, the lot is not required to be retained pending laboratory results; however, the importer may choose to retain the lot pending the laboratory results. The lot is subject to recall if it is not retained and is found to contain violative levels of residue. For intensified sampling, the lot must be retained pending laboratory results. The data obtained from laboratory analyses are entered into the Automated Import Information System (AIIS), an FSIS database designed to generate reinspection assignments, receive and store results, and compile histories for the performance of foreign establishments certified by the inspection system in the exporting country.

Estimated Livestock, Poultry, and Egg Products

Consumption Data

Table 1 and Figure 1 present the number of head slaughtered or pounds of eggs processed, pounds per animal (dressed weight), total pounds (dressed weight), and the percent estimated relative consumption of domestic and exported product for each production class.

Production Class	Number of Head Slaughtered ¹	Pounds per Animal (dressed weight) ²	Total Pounds (dressed weight)	Percent Estimated Relative Consumption
Bulls	583,728	878	512,513,184	0.470
Beef Cows	3,331,889	610	2,032,452,290	1.865
Dairy Cows	2,826,637	610	1,724,248,570	1.582
Heifers	9,739,581	782	7,616,352,342	6.988
Steers	16,290,325	847	13,797,905,275	12.660
Bob Veal	520,783	75	39,058,725	0.036
Formula-fed Veal	370,454	245	90,761,230	0.083
Non-formula-fed Veal	15,999	350	5,599,650	0.005
Heavy Calves	29,453	400	11,781,200	0.011
SUBTOTAL, CATTLE	33,708,849		25,830,672,466	23.700
Market Hogs	108,206,020	203	21,965,822,060	20.154
Roaster Pigs	753,423	70	52,739,610	0.048
Boars/Stags	449,713	199	89,492,887	0.082
Sows	3,352,852	306	1,025,972,712	0.941
SUBTOTAL, SWINE	112,762,008		23,134,027,269	21.225
Sheep	2,159,338	70	151,153,660	0.139
Lambs	154,153	64	9,865,792	0.009
Goats	651,783	50	32,589,150	0.030
SUBTOTAL, OVINE	2,965,274		193,608,602	0.178
Bison	53,510	610	32,641,100	0.030
TOTAL, ALL LIVESTOCK	149,489,641		49,190,949,437	45.133
Young Chickens	8,544,285,285	Not Reported	47,776,488,239	43.835
Mature Chickens	138,692,395	Not Reported	796,037,624	0.730
Young Turkeys	245,590,672	Not Reported	7,099,906,243	6.514
Mature Turkeys	1,810,634	Not Reported	47,820,431	0.044
Ducks	22,896,447	Not Reported	153,923,719	0.141
Geese	178,434	Not Reported	2,489,307	0.002
Other Fowl (includes squab)	2,953,823	Not Reported	2,923,171	0.003
SUBTOTAL, POULTRY	8,956,407,690		55,879,588,734	51.269
Rabbits	271,415	Not Reported	1,287,878	0.001
Egg Products	Not Applicable	Not Applicable	3,920,140,000 ³	3.597
GRAND TOTAL in POUNDS, ALL PRODUCTION CLASSES			105,075,746,189	100

Table 1. 2009 Estimated Relative Consumption Data by Production Class

1-Number of heads is obtained from the Animal Disposition Reporting System (ADRS).

2-Average dressed weights are obtained from the publication, "Livestock Slaughter 2008 Summary", National Agricultural

Statistics Service (NASS), March 2010. In instances when the average weight is not available, an average weight based on the previous calendar year's data was imputed.

3- Fiscal Year 2009

¹ FSIS employs techniques and principles from the field of risk analysis to determine the relative public health concerns associated with the data obtained in the scheduled sampling plan. The information on the residue prevalence and residues concentration is combined with consumption data to estimate exposure. Exposure = Consumption Data x Chemical Residue Levels

Definitions of FSIS Production Classes

Bovine

- Beef cows are mature female cattle bred for muscle development, ordinarily having given birth to one or more calves.
- Bulls are mature, uncastrated male cattle.
- Calves/veal definitions are under FSIS review.
- Dairy cows are mature female cattle bred for milk production, ordinarily having given birth to one or more calves.
- Heifers are young, female cattle that have not yet given birth to a calf.
- Steers are male cattle castrated before sexual maturity.

Porcine

- Boars are mature swine showing male sexual characteristics.
- Market hogs are swine usually marketed near six months of age and are 200 to 300 pounds live weight.
- Roaster pigs are animals of both sexes and any age that are marketed with the carcass unsplit and with the head intact.
- Sows are mature female swine ordinarily having given birth to one or more litters.
- Stags are male swine castrated after they have reached sexual maturity.

Poultry

- Ducks are birds of both sexes and any age.
- Egg products are yolks, whites, or whole eggs after breaking and processed as dried, frozen, or liquid.
- Geese are birds of both sexes and any age.
- Mature chickens are adult female birds, usually more than 10 months of age.
- Mature turkeys are birds of both sexes and usually more than 15 months of age.
- Other poultry include ratites (typically ostriches, emus, and rheas), guineas, squabs (young, unfledged pigeons), adult pigeons, pheasants, grouse, partridge, quail, etc.
- Young chickens include broilers/fryers birds of both sexes that are usually less than 10 weeks of age; roasters are birds of both sexes usually less than 12 weeks of age; and capons are surgically castrated male birds, usually less than 8 months of age.
- Young turkeys include fryer/roaster birds that are of both sexes and usually less than 12 weeks of age, and include turkeys that are birds of both sexes, usually less than six months of age.

Other

- Goats are animals of both sexes and any age.
- Lambs are defined as sheep younger than 14 months and having a break joint in at least one leg.
- Other livestock include bison, deer, and elk, which are under voluntary inspection
- Rabbits are any of several lagomorph mammals of both sexes, any age, and are under voluntary inspection.
- Sheep are mature animals of both sexes.

Note: The residue sample results with violation are also reported in the Residue Violation Information System (RVIS); a system used by FSIS and FDA.

Outlines of U.S. NRP Domestic Scheduled Samples Logistics

- The U.S. NRP process begins with the Surveillance Advisory Team (SAT), which consists of members from FDA, EPA, FSIS, CDC, AMS, and ARS.
- Risk analysis principles are used to select and prioritize compounds, select compound/production class pairs, and select the number of animals in each production class to be tested for the following year.
- The Office of the Chief Information Officer (OCIO) establishes sampling frames for sample collection that randomly select USDA-FSIS federally inspected and state-inspected establishments managed by the FSIS Federal-State Cooperative Program.
- Federal inspectors from FSIS Office of Field Operations (OFO) and state inspectors randomly select healthy-appearing animals that have passed ante-mortem inspection and send the samples to FSIS laboratories for screening, quantification, and confirmation.
- The Chemical Residue Risk Branch (CRRB) compiles and analyses the data as exposure assessments based on statistical sampling.

Domestic Scheduled Sampling

Sampling Methodology:

CRRB determines the sample size per production/compound through the NRP annual sampling plans. CRRB assigns an integer number to eligible plants depending on the size of the plant. These numbers are proportional to the size of the establishment, which determines the maximum number of times an establishment may be sampled in a month. An establishment with a single integer number is eligible for sampling at most once. An establishment assigned with multiple integer numbers may be sampled multiple times.

Algorithm Frequency:

One algorithm determines the number of samples collected, regardless of a product class/compound pairing. To be eligible for sampling, the establishment must meet a minimum volume of production. Total volume production includes all production, regardless of establishment eligibility. Probability of selection is related to an establishment's slaughter volume in the previous 12 to 15 months.

Number of Samples:

The 2009 U.S. NRP Scheduled Sampling Plans (i.e., *Blue Book*) reports annual sample size per species. An annual plan to collect 300 samples requires that 25 samples be taken every month (300/12). When the annual sampling plan does not divide evenly, the monthly sampling plan is rounded up. For no response, the algorithm selects other establishments for residue scheduled sampling. In addition, the algorithm schedules additional samples to accommodate the anticipated non-response scenario.

Appendix II provides the number of samples required to ensure the detection of a violation. Using a binomial distribution with the sample size "n" and the violation rate "v" (in decimal number), the probability p, of finding at least one violation among the n samples (assuming random sampling) is: $p = 1 - (1 - v)^n$. Therefore, if the true violation rate is 1% (i.e. 0.01), the probabilities of detecting at least one violation with sampling levels of 230 or 300 are 0.90 and 0.95 confidence level respectively.

Inspector-Generated Sampling

FSIS inspectors collect samples (kidney, liver, muscle, fat, and egg product). Samples screened in-plant using:

- Antimicrobial Screening Test (FAST)
- Kidney Inhibition Swab (KISTM) Test Implemented in bovine production class.

Lab screening methods are useful tools to indicate whether the residues are present in the sample. FAST or KISTM samples that test positive are sent to FSIS laboratories and analyzed using "determinative and confirmatory" methods. Confirmatory methods are used to verify the chemical identity of the residue detected. These chemicals are quantified using a determinative method.

• Samples sent to and analyzed by FSIS laboratories (COLLGEN).

Under the domestic (scheduled and inspector-generated) sampling program, laboratory analysts enter, review, and approve sample results in the Laboratory Information Management System (LIMS). The "Sample Scheduled" tool in LIMS provides faster laboratory turn around time for results. After entry into LIMS, the data is exported to a data warehouse (DW), an FSIS centralized repository for historical and statistical data. FSIS extracts the residue sample results from the FSIS DW and uses it to prepare the annual U.S. NRP (*Red Book*).

FSIS Laboratory Analyses

- The Eastern Laboratory, Athens, GA analyzes for arsenicals, avermectins, chloramphenicol, florfenicol, lead and cadmium, as well as sulfonamides, nitroimidazoles, and thyreostats.
- The Midwestern Laboratory, St. Louis, MO analyzes for antibiotics, flunixin, sulfonamides, trenbolone, and zeranol.
- The Western Laboratory, Alameda, CA analyzes for *beta*-Agonists, carbadox, chlorinated hydrocarbons (CHCs), chlorinated organophosphates (COPs), and nitrofurans.

Figure 3. 2009 U.S. NRP Sampling Program: Summary Results

SUMMARY OF DOMESTIC DATA

Scheduled Sampling

Sampling for Exposure Assessments

In 2009, FSIS laboratories analyzed 128 chemical compounds of veterinary drugs and pesticides. Of the 17,241 samples analyzed, the NRP identified 21 chemical residue violations: antibiotics (5), avermeetins/milbemycins (2), carbadox (2), florefenicol (4), nitrofurans (1), pesticides (PBDE) (1), and sulfonamides (6).

FSIS laboratories found no residue violations for arsenic, *beta*-Agonists, chloramphenicol, flunixin, nitroimidazoles, thyreostats, trenbolone, and zeranol. This section reports the summary results from the domestic scheduled sampling plan by production class and compound class.

Figure 5. 2009 Scheduled Samples: Residue Violations

Production Class

Table 2 and Figure 6 contain the results from the 2009 domestic scheduled sampling plan by production class.

Table 2. Total Number of Samples by Production Class

2009 Domestic Scheduled Sampling Plan

Production Class	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Beef Cows	1,235	7	1	0.08
Boars/Stags	388	29	0	0.00
Bob Veal	712	27	2	0.28
Bulls	573	3	2	0.35
Dairy Cows	1,837	1	1	0.05
Ducks	291	0	0	0.00
Formula-fed Veal	1,161	44	1	0.09
Geese	20	0	0	0.00
Goats	293	1	1	0.34
Heavy Calves	334	10	1	0.30
Heifers	443	2	0	0.00
Lambs	561	12	0	0.00
Market Hogs	1,610	46	1	0.06
Mature Chickens	910	7	0	0.00
Mature Sheep	449	7	0	0.00
Mature Turkeys	530	6	0	0.00
Non-formula-fed Veal	798	1	5	0.63
Rabbits	52	34	0	0.00
Roaster Pigs	844	103	4	0.47
Sows	466	23	0	0.00
Steers	1,387	7	2	0.14
Young Chickens	1,520	89	0	0.00
Young Turkeys	827	14	0	0.00
TOTAL	17,241	473	21	0.12

Figure 6. Total Number of Samples and Violation Rate by Production Class

2009 Domestic Scheduled Sampling Plan

[31]

Compound Class

Table 3 and Figure 7 report results by compound class from the 2009 domestic scheduled samples.

Table 3. Total Number of Samples by Compound Class

2009 Domestic Scheduled Sampling Plan

Compound Class	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	5,154	334	5	0.10
Arsenic	1,473	84	0	0.00
Avermectins	1,645	27	2	0.12
beta Agonists	372	2	0	0.00
Carbadox	372	3	2	0.54
Chloramphenicol	1,369	0	0	0.00
Florfenicol	426	0	4	0.94
Flunixin	579	0	0	0.00
Furazolidone	644	0	1	0.16
Nitroimidazoles	633	0	0	0.00
Pesticides	1,268	23	1	0.08
Sulfas	2,496	0	6	0.24
Thyreostats	216	0	0	0.00
Trenbolone	448	0	0	0.00
Zeranol	146	0	0	0.00
TOTAL	17,241	473	21	0.12

Figure 7. Total Number of Samples and Violation Rate by Compound Class 2009 Domestic Scheduled Sampling Results

[33]

Exploratory Assessments

Environmental Contaminants — FSIS inspectors submitted samples from 276 dairy cows for cadmium and lead testing. The results of the analysis are reported on pages 105-106.

Inspector-Generated Sampling

Sampling for Suspect Animals

The NRP focused on 16 compound classes of veterinary drugs and pesticides. Of the 151,303 samples analyzed, 1,507 chemical residue violations in 1,105 animals were found. The residue violations consisted of three phenylbutazone, 301 sulfas, 242 flunixin, and 961 antibiotics.

Figure 8. Residue Violations

2009 Inspector-Generated Sampling Plan, Suspect Animals

Sampling for suspect populations

Bob Veal:

The FSIS laboratory used FAST kits to analyze 14,046 samples from bob veal calves for antibiotics and sulfonamides. Bob veal calf testing included samples from both the suspect population and suspect animals. FSIS laboratories confirmed 140 violations in 100 animals. The residue violations consisted of one ampicillin, seven desfuroylceftiofur (DCA or DCCD), 16 flunixin, four gentamycin sulfate, 63 neomycin, eight oxytetracycline, seven penicillin, four sulfadiazine, 12 sulfadimethoxine, seven sulfamethazine, and 11 sulfamethoxazole.

FSIS laboratories used KIS[™] test kits to screen 23,427 samples from bob veal calves for antibiotics and sulfonamides. Bob veal calf testing included samples from both the suspect population and suspect animals. Of the animals tested, FSIS laboratory confirmed 207 violations in 149 animals. The residue violations consisted of three desfuroylceftiofur (DCA or DCCD), 13 flunixin, 28 gentamycin sulfate, 69 neomycin, nine oxytetracycline, four penicillin, one phenylbutazone, two sulfadiazine, six sulfadimethoxine, 12 sulfamethazine, 14 sulfamethoxazole, one sulfathiazole, 16 tetracycline, 11 tilmicosin, and 18 tulathromycin.

Show Animals

FSIS laboratories conducted analyses for antibiotics and sulfonamides on one lamb, nine market hogs, one mature sheep, and six steers, and detected no violations. FSIS labs conducted analyses for clenbuterol, salbutamol, ractopamine, and cimaterol (*beta*-Agonists) on three bovine, one bull, three heifers, five lamb, nine market hogs, one mature sheep, and 11 steer, and detected zero violations. FSIS labs analyzed one market hog and one steer for flunixin and detected zero violations.

Table 4. Number of Samples Tested by Production Class

2009 Domestic Sampling Plan (Scheduled and Inspector-Generated)

Production Class	Scheduled Samples Exposure Assessments	Scheduled Samples Exploratory Assessment	Inspector-generated Samples, Suspect Animals	Inspector- generated Samples, Suspect Populations
Beef Cows	1,235	0	10,611	0
Boars/Stags	388	0	212	0
Bob Veal	712	0	37,500 ³	37,500 ¹
Bovine ²	0	0	0	3
Bulls	573	0	1,442	1
Dairy Cows	1,837	552	80,091	0
Ducks	291	0	0	0
Formula-fed Veal	1,161	0	872	0
Geese	20	0	0	0
Goats	293	0	300	0
Heavy Calves	334	0	507	0
Heifers	443	0	1,835	3
Lambs	561	0	722	6
Market Hogs	1,610	0	9,189	18
Mature Chickens	910	0	0	0
Mature Sheep	449	0	224	2
Mature Turkeys	530	0	0	0
Non-formula-fed Veal	798	0	232	0
Rabbits	52	0	0	0
Roaster Pigs	844	0	286	0
Sows	466	0	2,676	0
Steers	1,387	0	4,159	17
Young Chickens	1,520	0	0	0
Young Turkeys	827	0	0	0
Other ³	0	0	375	0
Total	17,241	552	151,233	37,550

¹ The total population analyzed includes both suspect population and suspect animals.
 ² Bovine refers to cattle production classes, and samples are coded as such by the inspector.
 ³ Others: other minor production classes.

Table 5. Number of Samples Tested by Compound Class

2009 Domestic Sampling Plan (Scheduled and Inspector-Generated)

Compound Class	Scheduled Samples, Exposure Assessments	Scheduled Samples, Exploratory Assessment	Inspector- Generated Samples, Suspect Animals	Inspector- Generated Samples, Suspect Populations
Antibiotics (7-plate bioassay)	5,155	0	0	0
Antibiotics and Sulfonamides	0	0	142	16
Antibiotics, Sulfonamides, Flunixin, and Phenylbutazone	0	0	151,081	37,500 ⁴
Arsenic	1,473	0	1	0
Avermectins	1,645	0	1	0
beta-Agonists	372	0	5	33
Cadmium	0	276	0	0
Carbadox	372	0	0	0
CHCs/COPs	1,628	0	0	0
Chloramphenicol	1,369	0	0	0
Florfenicol	426	0	0	0
Flunixin	579	0	0	1
Lead	0	276	0	0
Nitrofurans	644	0	0	0
Nitroimidazoles	633	0	0	0
Phenylbutazone	0	0	0	0
Sulfonamides	2,496	0	1	0
Thyreostats	216	0	0	0
Trenbolone	448	0	2	0
Zeranol	146	0	0	0
Total	17,241	552	151,233	37,550

⁴Under the Inspector-Generated Sampling plan, positive FAST and or KISTM samples taken in the plant are further analyzed for flunixin and phenylbutazone (non-steroidal anti-inflammatory compounds) in the laboratory.

Summary of Import Data

The United States imported approximately 3,353,662,536 (3.35 billion) pounds of fresh and processed meat, poultry, and egg products. These products were imported from 28 of the 33 countries eligible for exportation to the United States¹. The import testing program included analysis of approximately 121 chemical residues from 13 compound classes of veterinary drugs and pesticides. Of 3,872 samples analyzed, one violation of avermectin was detected.

Normal

Thirteen compound classes of veterinary drugs and pesticides were tested. Of the 3,820 samples analyzed, one violation of avermectin was detected.

Increased

Three samples were tested for antibiotics using the 7-plate bioassay and detected zero violations.

Intensified

Two compound classes of veterinary drugs and pesticides were tested. Of the 49 samples analyzed, zero violations were detected.

Source: Office of International Affairs — Food Safety and Inspection Service

www.fsis.usda.gov/pdf/import summary 2009.pdf

Figure 9. 2009 Imported Meat and Poultry Products by Country (% of total net weight)

¹ The 29 of the 33 countries that were eligible for import are the following: Argentina, Australia, Austria, Brazil, Canada, Chile, Costa Rica, Croatia, Denmark, Finland, France, Germany, Honduras, Hungary, Iceland, Ireland, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Nicaragua, Northern Ireland, Poland, Spain, Sweden, United Kingdom, and Uruguay. Note: United Kingdom includes England, Scotland, and Wales, which are under one inspection system, as well as Northern Ireland, which is under a separate inspection system and is listed separately.

DOMESTIC SAMPLING RESULTS

Tables 6 - 20 identify information obtained from the FSIS Microbiological and Residue Computer Information System (MARCIS). These tables list summary and detailed results by compound class.

Scheduled Sampling- Sampling for Exposure Assessments, Compound Class Data

(Summary and Detailed Tables)

Tables 6a-20a present domestic scheduled sampling results. The tables include the total number of animals tested (or the number of composite samples in the case of poultry), the number of non-violative positives (compounds detected at a level equal to or below the established tolerance), the number of violations, and the percent of violations for each compound class. Because multiple compounds can be analyzed on the same sample, one sample (i.e., one animal or a composite from one poultry flock) could have more than one violation. A series of bar charts illustrate these data.

Tables 6b-20b detail the tissue type, number of samples, number of violations, and the range of each detected compound tested in every production class. The number of positive results and violations are reported in intervals, with the lowest interval listed as either 0.01 - 0.10 parts per million (ppm) or 0.01 - 0.10 parts per billion (ppb) depending on the analytical method used for the given chemical compound.

Samples that do not contain detectable residues were categorized as "None". The no-detect level varies for each analyte, but the level does not fall below 0.01 ppm or less than 0.01 ppb. Appendix I contains the minimum proficiency level results.

Tables 6b-20b may include two columns for some compound class categories. The additional columns indicate instances when residues were detected, but were not quantitated violative (code: 8888) or non-violative (code: 9999).

Tables 6c-20c summarizes violation results by compound class, such as production class, chemical residue, tissue type, and residue detected (ppb or ppm). These tables are contingent on violations being detected.

Antibiotics

An antibiotic is a chemical substance that has the capability in dilute solutions to destroy or inhibit the growth of microorganisms. The antibiotics quantitated by the 7-plate bioassay and associated follow-up methodologies range from ceftiofur, one of the most widely sold animal drug in the United States, to fluoroquinolone antibiotics, prohibited by the FDA from extra-label use in animals intended for food.¹ Appendix I contains a complete list of the antibiotics in the 7-plate bioassay.

FSIS laboratories analyzed 5,154 samples for antibiotic residues and detected five violations and 334 nonviolative positives. The residue violations consisted of three gentamycin sulfate, one tilmicosin, and one neomycin.

Production Class	Number of Samples	Number of Non-violative Positives	Number of Violations	Sample Percent Violations
Beef Cows	277	0	0	0.00
Boars/Stags	260	23	0	0.00
Bob Veal	259	27	1	0.39
Bulls	257	0	0	0.00
Dairy Cows	295	1	0	0.00
Ducks	51	0	0	0.00
Formula-fed Veal	338	34	0	0.00
Geese	20	0	0	0.00
Goats	63	0	0	0.00
Heavy Calves	68	10	0	0.00
Heifers	256	2	0	0.00
Lambs	256	6	0	0.00
Market Hogs	296	43	0	0.00
Mature Chickens	336	7	0	0.00
Mature Sheep	207	0	0	0.00
Mature Turkeys	264	6	0	0.00
Non-Formula-fed Veal	106	1	2	1.86
Rabbits	52	34	0	0.00
Roaster Pigs	297	98	0	0.00
Sows	257	23	0	0.00
Steers	293	0	2	0.68
Young Chickens	321	5	0	0.00
Young Turkeys	325	14	0	0.00
Total	5,154	334	5	0.09

Table 6a. Antibiotics Summary (7-plate bioassay)2009 Domestic Scheduled Sampling Results

¹ See Animal Medical Drug Use Clarification Act (AMDUCA) of 1994.

Table 6b. Antibiotics Residue Levels 2009 Domestic Scheduled Sampling Results

				Antibiotics Levels (ppm) Found in Samples									
Production Class	Tissue	Number of Samples	Violations	None	0.11- 0.20	0.21- 0.30	0.31- 0.50	0.51- 1.00	1.01-2.51	2.51- 5.00	> 5.00	Non- Quantitative Non- violative	Non- Quantitative Violative
Beef Cows	Kidney	277	0	277	-	-	-	-	-	-	-	-	
Boars/Stags	Kidney	260	0	238	-	-	1	-	-	-	-	21	-
Bob Veal	Kidney	259	1	234	-	-	-	-	5	2	1	17	
Bulls	Kidney	257	0	257	-	-	-	-	•	-	-	-	-
Dairy Cows	Kidney	295	0	294	-	-	-	-	-	-	-	1	-
Ducks	Kidney	51	0	51	-	-	-	-	-	-	-	-	-
Formula-fed Veal	Kidney	338	0	304	1	-	1	1	1	1	-	29	-
Geese	Kidney	20	0	20	-	-	-	-	-	-	-	-	-
Goats	Kidney	63	0	63	-	-	-	-	-	-	-	-	-
Heavy Calves	Kidney	68	0	60	-	1	1	1	-	-	1	4	-
Heifers	Kidney	256	0	254	-	-	-	1	1	-	-	-	-
Lambs	Kidney	256	0	250	1	1	1	-	-	-	-	3	-
Market Hogs	Kidney	296	0	254	-	-	-	1	-	-	-	41	-
Mature Chickens	Kidney	336	0	329	-	-	-	1	-	-	-	6	-
Mature Sheep	Kidney	207	0	207	-	-	-	-	-	-	-	-	
Mature Turkeys	Kidney	264	0	258	-	-	-	1	-	-	-	5	-
Non-Formula-fed Veal	Kidney	106	2	102	-	-	-	-	1	-	-	1	2
Rabbits	Kidney	52	0	19	-	-	-	-	-	-	-	33	-
Roaster Pigs	Kidney	297	0	211	2	3	1	1	-	1	-	78	-
Sows	Kidney	257	0	237	-	-	-	1	-	-	-	19	-
Steers	Kidney	293	2	289	-	-	-	-	-	-	-	2	2
Young Chickens	Kidney	321	0	316		-	1	-	-	-	-	4	-
Young Turkey	Kidney	325	0	311	-	1	-	1	2	-	-	10	-

[41]

Figure 12. Antibiotics Summary 2009 Domestic Scheduled Sampling Results

[42]

Production class	Compound Class	Residue	Tissue	Result (ppm)
Non-formula-fed Veal	Antibiotics	Gentamycin Sulfate	Kidney	8888 ¹
Bob Veal	Antibiotics	Neomycin	Kidney	17.89
Steers	Antibiotics	Gentamycin Sulfate	Kidney	8888
Non-formula-fed Veal	Antibiotics	Tilmicosin	Liver/Muscle	2.95/0.52
Steers	Antibiotics	Gentamycin Sulfate	Kidney	8888

¹ 8888 value indicates the result is violative, but not quantified. The residue levels were not determined because any amount of the identified residue constitutes a violation

Arsenic¹

Arsenical compounds are used in swine and poultry as growth promoters, coccidiostats, and bacterial enteritis prevention.

FSIS laboratories analyzed 1,473 samples from Beef Cows, Dairy Cow, Market Hogs, Mature Chicken, and Young Chickens for arsenic; zero violations and 84 non-violative positives were detected.

Production Class	Number of Samples	Number of Non- violative Positives	Number of Violations	Sample Percent Violations
Beef Cows	279	0	0	0.00
Dairy Cows	277	0	0	0.00
Market Hogs	281	0	0	0.00
Mature Chickens	312	0	0	0.00
Young Chickens	324	84	0	0.00
Total	1,473	84	0	0.00

Table 7a. Arsenic Summary2009 Domestic Scheduled Sampling Results

¹ The method reduces organic arsenic to inorganic arsenic prior to quantification. The reported results include both original organic and inorganic arsenic species.

Table 7b. Arsenic Residue Levels2009 Domestic Scheduled Sampling Results

				Arsenic Levels (ppm) Found in Samples					ples
Production class	Tissue	Number of Samples	Violations	None	0.11- 0.20	0.21- 0.30	0.31- 0.50	0.51- 1.00	1.01- 2.51
Beef Cows	Liver	279	0	279	-	-	-	-	-
Dairy Cows	Liver	277	0	277	-		-	-	-
Market Hogs	Liver	281	0	281	-	-	-	-	
Mature Chickens	Liver	312	0	312		-	-	-	
Young Chickens	Liver	324	0	240	1	32	35	14	2

Figure 13. Arsenic Summary 2009 Domestic Scheduled Sampling Results

Avermectins (Ivermectin and Doramectin) and Milbemycins (Moxidectin)

Avermectins (ivermectin and doramectin) and milbemycins (moxidectin) are macrocyclic lactones used in animal husbandry practices against nematode and arthropod parasites. Ivermectin is an effective paraciticide. Doramectin is a potent endectocide that combines broad-spectrum activity with a prolonged duration of activity against the major internal and external parasites of cattle. Moxidectin is an antiparasitic drug that controls a range of internal and external parasites in sheep and cattle.

FSIS laboratories analyzed 1,645 samples for avermectin and milbemycin residues. Two (2) ivermectin violations were detected.

Production Class	Number of Samples	Number of Non- violative Positives	Number of Violations	Sample Percent Violations
Beef Cows	228	7	0	0.00
Bulls	137	3	1	0.73
Formula-fed Veal	250	10	0	0.00
Goats	86	0	1	1.16
Heavy Calves	81	0	0	0.00
Lambs	188	3	0	0.00
Market Hogs	216	0	0	0.00
Mature Sheep	154	4	0	0.00
Non-Formula-fed Veal	84	0	0	0.00
Steers	221	0	0	0.00
Total	1,645	27	2	0.12

Table 8a. Avermectins and Milbemycins Summary2009 Domestic Scheduled Sampling Results

Table 8b. Avermectins and Milbemycins Residue Levels2009 Domestic Scheduled Sampling Results

				Avermectins an Milbemycins Levels (ppb) Found in Samp	
Production class	Tissue	Number of Samples	Violations	None	> 5.00
Beef Cows	Liver	228	0	223	5
Bulls	Liver	137	1	133	4
Formula-fed Veal	Liver	250	0	244	6
Goats	Liver	86	1	85	1
Heavy Calves	Liver	81	0	81	-
Lambs	Liver	188	0	185	3
Market Hogs	Liver	216	0	216	-
Mature Sheep	Liver	154	0	152	2
Non-Formula-fed Veal	Liver	84	0	84	-
Steers	Liver	221	0	221	-

Table 8c. Avermectins Violations Report2009 Domestic Scheduled Sampling Results

Production Class	Compound Class	Residue	Tissue	Result (ppb)
Goat	Avermectins	Ivermectin	Liver	145
Bull	Avermectins	Ivermectin	Liver	338

Figure 14. Avermectins and Milbemycins Summary 2009 Domestic Scheduled Sampling Results

beta -Agonists (Clenbuterol, Cimaterol, Ractopamine, Salbutamol, and Zilpaterol)

Clenbuterol, a growth promotant, is not currently registered for use in livestock in the United States and is AMDUCA¹ prohibited from extra-label use in animals intended for food. Ractopamine is used for increased rate of weight gain, improved feed efficiency, increased carcass leanness, and prevention and/or control of porcine proliferative enteropathies (ileitis). Zilpaterol is used for increased rate of weight gain, improved feed efficiency, and increased carcass leanness in cattle fed in confinement for slaughter during the last 20 to 40 days on feed. Cimaterol and Salbutamol are *beta*-Agonists not approved for use in United States for food animals.

FSIS laboratories analyzed 49 goats, 153 non-formula fed veal, and 170 Steers samples for *beta*-Agonists residues. This study found zero violations for all beta-Agonists and two non-violative positives for Ractopamine.

Production Class	Number of Samples	Number of Non- violative Positives	Number of Violations	Sample Percent Violations
Goats	49	0	0	0.00
· Non-formula-fed Veal	153	0	0	0.00
Steers	170	2	0	0.00
Total	372	2	0	0.00

Table 9a. beta-Agonists Summary2009 Domestic Scheduled Sampling Results

Table 9b. beta-Agonists Residue Levels2009 Domestic Scheduled Sampling Results

					nist Levels Found in nples
Production Class	Tissue	Number of Samples	Violations	None	> 5.00
Goats	Liver	49	0	49	-
Non-Formula-fed Veal	Liver	153	0	153	-
Steers	Liver	170	0	169	1

¹ Animal Medical Drug Use Clarification Act of 1994

Carbadox

Carbadox is approved to prevent or treat enteritis, as well as to improve feed efficiency and weight gain in swine. FSIS laboratories analyzed 193 market hog samples for carbadox. The results revealed zero violation and zero non-violative positives. FSIS laboratories analyzed 179 roaster pig samples for carbadox and detected two violations and three non-violative positives.

Table 10a. Car	badox Sun	ımary	
2009 Domestic	Scheduled	Sampling	Results

Production Class	Number of Samples	Number of Non- violative Positives	Number of Violations	Sample Percent Violations
Market Hogs	193	0	0	0.00
Roaster Pigs	179	3	2	1.12
Total	372	3	2	0.54

Table 10b. Carbadox Residue Levels2009 Domestic Scheduled Sampling Results

				Carba Found (dox Levels in Samples ppb)
Production Class	Tissue	Number of Samples	Violations	None	> 5.00
Market Hogs	Liver	193	0	193	÷
Roaster Pigs	Liver	179	2	174	5

Table 10c. Carbadox Violations Report2009 Domestic Scheduled Sampling Results

Production class	Compound Class	Residue	Tissue	Result (ppb)
Roaster Pigs	Carbadox	Carbadox	Liver	53
Roaster Pigs	Carbadox	Carbadox	Liver	55

Figure 16. Carbadox Summary 2009 Domestic Scheduled Sampling Results

Chloramphenicol

Chloramphenicol is a potent, broad-spectrum antibiotic drug that has toxic effects in humans. As such, this drug is AMDUCA¹ prohibited for extra label use in animals intended for food. Chloramphenicol depresses the development of a type of bone marrow (aplastic anemia) in susceptible individuals.

FSIS laboratories analyzed 1,369 samples for chloramphenicol and detected zero violations and zero non-violative positives by production class.

Production Class	Number of Samples	Number of Non-violative Positives	Number of Violations	Sample Percent Violations
Bob Veal	247	0	0	0.00
Dairy Cows	281	0	0	0.00
Mature Turkeys	266	0	0	0.00
Steers	264	0	0	0.00
Young Chickens	311	0	0	0.00
Total	1,369	0	0	0.00

Table 11a. Chloramphenicol Summary2009 Domestic Scheduled Sampling Results

Table 11b. Chloramphenicol Residue Levels2009 Domestic Scheduled Sampling Results

				Chloramphenicol Levels (ppb) Found in Samples
Production Class	Tissue	Number of Samples	Violations	None
Bob Veal	Muscle	247	0	247
Dairy Cows	Muscle	281	0	281
Mature Turkeys	Muscle	266	0	266
Steers	Muscle	264	0	264
Young Chickens	Muscle	311	0	311

¹ Animal Medical Drug Use Clarification Act of 1994

Chlorinated Hydrocarbons and Chlorinated Organophosphates

Chlorinated hydrocarbons, chlorinated organophosphates, organophosphates, and pyrethroids are effective insecticides. Some of these compounds - such as DDT - are no longer marketed because of their extremely long half-life. FSIS employs analytical methodologies to detect these pesticides and environmental contaminants, such as PCBs. Appendix I provides a complete list of the analytes for this multi-residue method.

FSIS laboratories analyzed 1,268 samples for chlorinated hydrocarbons and chlorinated organophosphates residues. One PBDE (polybrominated diphenyl ether) violation and 23 non-violative positive samples were detected.

Production Class	Number of Samples	Number of Non- violative Positives	Number of Violations	Sample Percent Violations
Boars/Stags	128	6	0	0.00
Goats	95	1	0	0.00
Lambs	117	3	0	0.00
Market Hogs	302	3	0	0.00
Mature Sheep	88	3	0	0.00
Roaster Pigs	269	2	1	0.37
Steers	269	5	0	0.00
Total	1,268	23	1	0.08

Table 12a. Chlorinated Hydrocarbons and Chlorinated Organophosphates Summary 2009 Domestic Scheduled Sampling Results

Table 12b. Chlorinated Hydrocarbons and Chlorinated Organophosphates Residue Levels2009 Domestic Scheduled Sampling Results

					Chlorinated Hydrocarbons/Organophosphates Levels (ppm) Found in Samples						
Production class	Tissue	Number of Samples	Violations	None	0.01- 0.10	0.11- 0.20	0.21-0.30	0.31- 0.50	0.51-1.00	1.01- 2.51	2.51- 5.00
Boars/Stags	Fat	128	0	122	2	1	1	1	-	_	1
Goats	Fat	95	0	94	-	1	-	-	-	-	-
Lambs	Fat	117	0	114	-	3	-	-	-	-	-
Market Hogs	Fat	302	0	299	-	-	-	3	-	-	_
Mature Sheep	Fat	88	0	85	1	1	1	-	-	-	_
Roaster Pigs	Fat	269	1	266	2	-	-	-	-	1	-
Steers	Fat	269	0	264	-	3	1	-	1	-	_

Table 12c. Chlorinated Hydrocarbons and Chlorinated Organophosphates Violations Report 2009 Domestic Scheduled Sampling Results

Production Class	Compound Class	Residue	Tissue	Result (ppm)
Roaster Pigs	Pesticides	PBDE (polybrominated dphenyl ether)	Fat	1.43

Figure 18. Chlorinated Hydrocarbons and Chlorinated Organophosphates Summary 2009 Domestic Scheduled Sampling Results

Florfenicol

Florfenicol is a broad-spectrum bacteriostatic antibiotic with similar applications as chloramphenicol. However, this antibiotic does not carry the risk of inducing human aplastic anemia that is associated with chloramphenicol. FSIS laboratories analyzed 426 samples for florfenicol residues and detected four violations.

Production Class	Number of Samples	Number of Non-violative Positives	Number of Violations	Sample Percent Violations
Beef Cows	۰ <u>1</u>	0	0	0.00
Bob Veal	116	0	1	0.86
Dairy Cows	207	0	0	0.00
Non-Formula-fed Veal	102	0	3	2.94
Total	426	0	4	0.94

Table 13a. Florfenicol Summary2009 Domestic Scheduled Sampling Results

Table 13b. Florfenicol Residue Levels2009 Domestic Scheduled Sampling Results

				Florfeni	col Leve in Sar	ls (ppm) nples	Found
Production Class	Tissue	Number of Samples	Violations	None	0.51- 1.00	1.01- 2.51	2.51- 5.00
Beef Cows	Liver	1	0	1	-	-	-
Bob Veal	Liver	116	1	115	-	-	1
Dairy Cows	Liver	207	0	207	-	-	-
Non-formula-fed Veal	Liver	102	3	99	2	1	-

Table 13c. Florfenicol Violations Report2009 Domestic Scheduled Sampling Results

Production Class	Compound Class	Residue	Tissue	Result (ppm)
Non-formula-fed Veal	Florfenicol	Florfenicol	Liver	0.68
Bob Veal	Florfenicol	Florfenicol	Liver	4.4
Non-formula-fed Veal	Florfenicol	Florfenicol	Liver	0.99
Non-formula-fed Veal	Florfenicol	Florfenicol	Liver	2.11

Figure 19. Florfenicol Summary 2009 Domestic Scheduled Sampling Results

Flunixin

Flunixin is a non-steroidal anti-inflammatory drug (NSAID) with approved use in swine and cattle to alleviate inflammation and pain associated with musculoskeletal disorders. FSIS laboratories analyzed 579 samples for flunixin residues and detected zero positive samples.

Production Class	Number of SamplesNumber of Non-violative Positives		Number of Violations	Sample Percent Violations	
Beef Cows	216	0	0	0.00	
Dairy Cows	231	0	0	0.00	
Heavy Calves	132	0	0	0.00	
Total	579	0	0	0.00	

Table 14a. Flunixin Summary2009 Domestic Scheduled Sampling Results

Table 14b. Flunixin Residue Levels2009 Domestic Scheduled Sampling Results

				Flunixin Levels (ppb) Found in Samples
Production Class	Tissue	Number of Samples	Violations	None
Beef Cows	Liver	216	0	216
Dairy Cows	Liver	231	0	231
Heavy Calves	Liver	132	0	132

Figure 20. Flunixin Summary 2009 Domestic Scheduled Sampling Results

Nitrofurans

Furazolidone is a nitrofuran compound with approved use in swine, but AMDUCA¹-prohibited for extra-label use in other species. Furaltadone is a synthetic nitrofuran antibiotic that is not approved for use in food-producing animals. FSIS laboratories analyzed 644 samples for nitrofuran (furazolidone and furaltadone) residues and detected one violation.

Table 15a. Nitrofurans Summary2009 Domestic Scheduled Sampling Results

Production Class	Number of Samples	Number of Non-violative Positives	Number of Violations	Sample Percent Violations
Dairy Cows	214	0	1	0.47
Market Hogs	221	0	0	0.00
Sows	209	0	0	0.00
Total	644	0	1	0.16

Table 15b. Nitrofurans Residue Levels2009 Domestic Scheduled Sampling Results

				Nitrofuran Levels (ppb) Found in Sar			
Production Class	Tissue	Number of Samples	Violations	None	Non-Quantitative Violative		
Dairy Cows	Liver	214	1	213	1		
Market Hogs	Liver	221	0	221	-		
Sows	Liver	209	0	209	-		

¹ Animal Medical Drug Use Clarification Act of 1994

Table 15c. Nitrofurans Violations Report2009 Domestic Scheduled Sampling Results

Production Class	Compound Class	Residue	Tissue	Result (ppm)
Dairy Cows	Furazolidone	Furazolidone	Liver	8888 ¹

Figure 21. Nitrofurans Summary 2009 Domestic Scheduled Sampling Results

¹ 8888 value indicates the result is violative, but not quantified. The residue levels were not determined because any amount of the identified residue constitutes a violation.

Nitroimidazoles

Nitroimidazoles, such as dimetridazole and ipronidazole, are AMDUCA¹-prohibited for extra-label use. FSIS laboratories analyzed 633 young chicken samples for nitroimidazole (hydroxyipronidazone and hydoxydimetridazole) residues and detected zero violations and zero non-violative positive residues.

Production Class	Number of Samples	Number of Non-violative Positives	Number of Violations	Percent Violations	Sample Percent Violations
Young Chickens	316	0	0	0.00	0
Young Turkey	317	0	0	0.00	0
Total	633	0	0	0.00	0

Table 16a. Nitroimidazoles Summary2009 Domestic Scheduled Sampling Results

Table 16b. Nitroimidazoles Residue Levels2009 Domestic Scheduled Sampling Results

				Nitroimidazole Levels (ppm) Found in Samples
Production Class	Tissue	Number of Samples	Violations	None
Young Chickens	Muscle	316	0	316
Young Turkey	Muscle	317	0	317

Figure 22. Nitroimidazoles Summary 2009 Domestic Scheduled Sampling Results

¹ Animal Medical Drug Use Clarification Act of 1994

Sulfonamides

Sulfonamides are a group of drugs used to treat infections. Some of these drugs have bacteriostatic action. FSIS laboratories analyzed 2,496 samples for sulfonamides and detected six violations. The chemical residue violations consisted of three sulfadimethoxine and three sulfamethazine.

Production Class	Number of Samples	Number of Non-violative Positives	Number of Violations	Sample Percent Violations
Beef Cows	234	0	1	0.43
Bob Veal	90	0	0	0.00
Bulls	179	0	1	0.56
Dairy Cows	116	0	0	0.00
Ducks	240	240 0 0		0.00
Formula-fed Veal	247	0	1	0.40
Heavy Calves	53	0	1	1.89
Heifers	187	0	0	0.00
Market Hogs	101	0	1	0.99
Mature Chickens	262	0	0	0.00
Non-formula-fed Veal	85	0	0	0.00
Roaster Pigs	99	0	1	1.01
Steers	170	0	0	0.00
Young Chickens	248	0	0	0.00
Young Turkeys	185	0	0	0.00
Total	2,496	0	6	0.24

Table 17a. Sulfonamides Summary2009 Domestic Scheduled Sampling Results

Table 17b. Sulfonamides Residue Levels2009 Domestic Scheduled Sampling Results

				Sulfonamide Levels (ppm) Found in Samples				nd in
Production Class	Tissue	Number of Samples	Violations	None	0.11- 0.20	0.21- 0.30	0.31- 0.50	1.01- 2.51
Beef Cows	Liver	234	1	233	-	-	1	-
Bob Veal	Liver	90	0	90	-	-	-	-
Bulls	Liver	179	1	178	1	-	-	-
Dairy Cows	Liver	116	0	116	-	-	-	-
Ducks	Liver	240	0	240	-	_	-	-
Formula-fed Veal	Liver	247	1	246	-	1	-	-
Heavy Calves	Liver	53	1	52	-	-	1	-
Heifers	Liver	187	0	187	-	-	-	-
Market Hogs	Liver	101	1	100	_	-	-	1
Mature Chickens	Liver	262	0	262	-	-	-	-
Non-formula-fed Veal	Liver	85	0	85	-	-	_	-
Roaster Pigs	Liver	99	1	98	-	-	-	1
Steers	Liver	170	0	170	-	-	-	-
Young Chickens	Liver	248	0	248	-	-	-	-
Young Turkeys	Liver	185	0	185	-	_	-	-

Table 17c. Sulfonamides Violations Report2009 Domestic Scheduled Sampling Results

Production Class	Compound Class	Residue	Tissue	Result (ppm)	
Beef Cows	Sulfas	Sulfadimethoxine	Liver	0.38	
Market Hogs	Sulfas	Sulfamethazine	Liver	1.66	
Heavy Calves	Sulfas	Sulfadimethoxine	Liver	0.33	
Formula-fed Veal	Sulfas	Sulfadimethoxine	Liver	0.22	
Roaster Pigs	Sulfas	Sulfamethazine	Liver	2.39	
Bulls	Sulfas	Sulfamethazine	Liver	0.11	

Figure 23. Sulfonamides Summary 2009 Domestic Scheduled Sampling Results

Thyreostats

Thyreostats are thyroid-inhibiting compounds that facilitate weight increase. FSIS laboratories analyzed samples from 216 beef cows and detected zero violations and zero non-violative positives results.

Production Class	Number of Samples	Number of Non- violative Positives	Number of Violations	Sample Percent Violations	
Beef Cows	216	0	0	0	
Total	216	0	0	0	

Table 18a. Thyreostats Summary2009 Domestic Scheduled Sampling Results

Table 18b. Thyreostats Residue Levels2009 Domestic Scheduled Sampling Results

		Number		Thyreostats Levels (ppb) Found in Samples
Production Class	Tissue	Samples	Violations	None
Beef Cows	Muscle	216	0	216

Trenbolone

Trenbolone is a xenobiotic anabolic steroid based on the principal male hormone testosterone. This steroid has approved use in cattle, but not for use in pre-ruminant cattle. FSIS laboratories analyzed 448 samples for trenbolone and detected zero violations and zero non-violative positives.

Table 19a. Trenbolone Summary2009 Domestic Scheduled Sampling Results

Production Class	Number of Samples	Number of Non- violative Positives	Number of Violations	Sample Percent Violations			
Formula-fed Veal	246	0	0	0.00			
Non-formula-fed Veal	202	0	0	0.00			
Total	448	0	0	0.00			

Table 19b. Trenbolone Residue Levels2009 Domestic Scheduled Sampling Results

				Trenbolone Levels (ppm) Found in Samples
Production Class	Tissue	Number of Samples	Violations	None
Formula-fed Veal	Liver	246	0	246
Non-formula-fed Veal	Liver	202	0	202

Figure 24. Trenbolone Summary

2009 Domestic Scheduled Sampling Results

Zeranol

Zeranol is a xenobiotic, estrogenic agent used primarily in veterinary medicine as a growth stimulant. It has approved use in cattle and sheep, but not in pre-ruminant cattle. FSIS laboratories analyzed 146 samples for zeranol residues and detected zero violations and zero non-violative positives.

Table 20a. Zeranol Summary2009 Domestic Scheduled Sampling Results

Production Class	Number of Samples	Number of Non-violative Positives	Number of Violations	Sample Percent Violations			
Formula-fed Veal	80	0	0	0.00			
Non-Formula-fed Veal	66	0	0	0.00			
Total	146	0	0	0.00			

Table 20b. Zeranol Residue Levels2009 Domestic Scheduled Sampling Results

				Zeranol Levels (ppb) Found in Samples
Production Class	Tissue	Number of Samples	Violations	None
Formula-fed Veal	Liver	80	0	94
Non-formula fed Veal	Liver	66	0	97

Figure 25. Zeranol Summary

2009 Domestic Scheduled Sampling Results

Production Cless	Andrea	Actinosylyc sides	° Antibioto	Anns	Berzene Herachikride (alpha, beta: and dista)	betu Agorists	briz Lactaria	Certator	Chlordane (cis and trava)	Chlorietri cyclire	001 and Vetabolites	Dinyslev Screpto rzycia	Donatoectin	Geslampsin Soffele	hemecia	Vacrotides	Nordecto	Неотуст	Dayietra cysiine	Photoscore	Ractop Unite	Terrespeire	Tetracyclice Recoveredikol Violativa	UWS	TOTAL
Beef (cas	+							!			÷	í -	1		4		2								7
Boars Stags		1				·				1	6		; 	1				9					10	1,	29
Bobivea	1						1			1		, 1				2		14			1	:	1		27
8. k	·		·						_		*	1			2		. 1								3
Daity cons						·																	1		1
Formatafiet vie								· ·		6	,		2		6		2	4					24		44
Goeta					1					:						1								i i	1
Kerry Caher		1						, 								1	:	7						1	10
Heiters										2			4									1 .	-		2
Lands			·						1	. 3	2					2	3				i		3		12
Kachethoga		1								i	3		1					30			1		10	1	45
liature shickess	• · · ·									i												1	6	; ;	7
Hature shees											3		1		1	:	2	1			1				1
Aztore Turkey	÷									1	-							1				•	3	1	6
Non-ferreula tad mai	•							:										1				•		† • †	1
Rebbia	L.	1																						33	34
Reaster pigs	ļ	12						3		7		2		1				28	1	2	1		34	13	103
Sons		2	1							1				-				1			1	1	6	6	23
Steens	1					1					5										1				7
Young chickers	4			84						1		;											3	1.	89
Young turkeys										3	2							1				1	6	3	14
Total by Resident	1	18	1	84	1	1	1	3	1	28	19	9	4	2	13	3	10	102	1	2	1	1	107	60	
																					TOTAL	. Non-Violati	ve Positive:		473

Table 21. Distribution of Non-Violative Positive Samples by Product Class-2009 Domestic Scheduled Sampling

[68]

Figure 26. Distribution of Percentage Non-Violative Positive Samples by Compound Class and Product Class, 2009 Domestic Scheduled Sampling

Under the domestic scheduled sampling program, tetracycline had the highest percentage of non-violative positives (23%),followed by neomycin (21%),and arsenic (18%). Roaster pigs, young chicken (all arsenic), and market hogs were the top three ranked production classes per the total number of positive non-violative residue samples.

Scheduled Sampling — Sampling for Exposure Assessments, Production Class Data

(Summary and Detailed Tables)

Tables 22 - 43 identify information obtained from the FSIS Microbiological and Residue Computer Information System (MARCIS). These tables list summary and detailed results by production class.

Tables 22a-43a contain a summary of domestic scheduled sampling results and provide the number of samples analyzed, number of non-violative positives (compounds detected at a level equal to or below the established tolerance), number of violations, and percent of violations for each production class. Because multiple compounds can be analyzed on the same sample, one sample (one animal or a composite from one poultry flock) may have more than one violation. The summary data appears as a series of bar charts.

Tables 22b-43b detail the tissue type, number of samples analyzed, number of violations, and the range for the amount detected for each production class tested in each compound class. The number of positive results and violations are reported in intervals, with the lowest interval listed as either 0.01-0.10 parts per million (ppm) or 0.01-0.10 parts per billion (ppb) depending on the analytical method used for the given chemical compound.

Samples that do not contain detectable residues were categorized as "None". The nodetect level is not less than 0.01 ppm or less than 0.01 ppb. Appendix I contains the minimum proficiency levels.

For some production class categories, tables22b-43b may include two columns for some compound class categories. The additional columns indicate instances when residues were detected, but were not quantitated as violative (code: 8888) or non-violative (code: 9999).

Tables 22c-43c summarize violation results by production class. These include chemical compound, tissue type, and residue detected results (ppb or ppm).
Beef Cows

FSIS laboratories analyzed 1,235 samples from beef cows and detected one residue violation for sulfadimethoxine. Table 22a summarizes the results of the testing by compound class.

Table 22a. Beef Cows Summary2009 Domestic Scheduled Sampling Results

Compound Class	Tissue	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	277	0	0	0.00
Arsenic	Liver	279	0	0	0.00
Avermectins	Liver	228	7	0	0.00
Florfenicol	Liver	1	0	0	0.00
Flunixin	Liver	216	0	0	0.00
Sulfas	Liver	234	0	1	0.43
Tota	1	1,235	7	1	0.08

Table 22b. Beef Cows Residue Levels2009 Domestic Scheduled Sampling Results

Compound Class	Tinit	Tisque	Number of	Violations	Residue Levels Found in Samples		
	Unit	Tissue	Samples	V 1012UONS	None	0.31- 0.50	Over 5.0
Antibiotics	ppm	Kidney	277	0	277	_	-
Arsenic	ppm	Liver	279	0	279	_	-
Avermectins	ppb	Liver	228	0	223	-	5
Florfenicol	ppm	Liver	1	0	1	_	-
Flunixin	ppb	Liver	216	0	216	-	-
Sulfas	ppm	Liver	234	1	233	1	-

Table 22c. Beef Cows Violations Report2009 Domestic Scheduled Sampling Results

Production Class	Compound Class	Residue	Tissue	Result	Unit
Beef Cow	Sulfas	Sulfadimethoxine	Liver	0.38	ppm

Figure 27. Beef Cows Summary 2009 Domestic Scheduled Sampling Results

Boars/Stags

FSIS laboratories analyzed 388 boar/stag samples for antibiotics and pesticides and detected no residue violations.

Table 23a. Boars/Stags Summary2009 Domestic Scheduled Sampling Results

Compound Class	Tissue	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	260	23	0	0.00
Pesticides	Fat	128	6	0	0.00
Total	388	29	0	0.00	

Table 23b. Boars/Stags Residue Levels2009 Domestic Scheduled Sampling Results

					Residue Levels Found in Samples						
Compound Class	Unit	Tissue	Number of Samples	Violat ions	None	0.01- 0.10	0.11- 0.20	0.21- 0.30	0.31- 0.50	2.51- 5.00	Not- Quanti Non-Vio ¹
Antibiotics	ppm	Kidney	260	0	238	-	_	-	1	-	21
Pesticides	ppm	Fat	128	0	122	2	1	1	1	1	-

¹ The residue levels were not determined because any amount of the identified residue does not constitute a violation.

Bob Veal

FSIS laboratories analyzed 712 samples from bob veal and detected two residue violations, one for neomycin and one florfenicol.

Table 24a. Bob Veal Summary2009 Domestic Scheduled Sampling Results

Compound Class	Tissue	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	259	27	1	0.39
Chloramphenicol	Muscle	247	0	0	0.00
Florfenicol	Liver	116	0	1	0.86
Sulfas	Liver	90	0	0	0.00
Total		712	27	2	0.28

Table 24b. Bob Veal Residue Levels2009 Domestic Scheduled Sampling Results

Gamma					Residue Levels Found in Samples					
Class	Unit	Tissue	Number of Samples	Violations	None	1.01- 2.51	2.51- 5.00	> 5.00	Not-Quanti Non-Vio ¹	
Antibiotics	ppm	Kidney	259	1	234	5	2	1	17	
Chloramphenicol	ppb	Muscle	247	0	247	-	-	-	-	
Florfenicol	ppm	Liver	116	1	115	-	1	_	-	
Sulfas	ppm	Liver	90	0	90	-	-	-	-	

¹ The residue levels were not determined because any amount of the identified residue does not constitute a violation.

Table 24c. Bob Veal Violations Report2009 Domestic Scheduled Sampling Results

Production Class	Compound Class	Residue	Tissue	Result	Unit
Bob Veal	Antibiotics	Neomycin	Kidney	17.89	ppm
Bob Veal	Florfenicol	Florfenicol	Liver	4.4	ppm

Figure 29. Bob Veal Summary 2009 Domestic Scheduled Sampling Results

Bulls

FSIS laboratories analyzed 573 bull samples and detected two residue violations, one for ivermectin and one for sulfamethazine. Table 25a summarizes the results of the testing by compound class.

Compound Class	Tissue	Number of Samples	Number of Non-violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	257	0	0	0.00
Avermectins	Liver	137	3	1	0.73
Sulfas	Liver	179	0	1	0.56
Tot	al	573	3	2	0.35

Table 25a. Bulls Summary2009 Domestic Scheduled Sampling Results

Table 25b. Bulls Residue LevelsBulls 2009 Domestic Scheduled Sampling Results

					Residue Levels Found in Samples		Found es
Compound Class	Unit	Tissue	Number of Samples	Violations	None	0.11- 0.20	> 5.00
Antibiotics	ppm	Kidney	257	0	257	-	-
Avermectins	ppb	Liver	137	1	133	-	4
Sulfas	ppm	Liver	179	1	178	1	-

Table 25c. Bulls Violations Report2009 Domestic Scheduled Sampling Results

Production Class	Compound Class	Residue	Tissue	Result	Unit
Bulls	Avermectins	Ivermectin	Liver	338	ppb
Bulls	Sulfas	Sulfamethazine	Liver	0.11	ppm

Figure 30. Bulls Summary 2009 Domestic Scheduled Sampling Results

Dairy Cows

FSIS laboratories analyzed 1,837 samples from dairy cows and detected one violation for Furazolidone.

Compound Class	Tissue	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	295	1	0	0
Arsenic	Liver	277	0	0	0
Chloramphenicol	Muscle	281	0	0	0
Florfenicol	Liver	207	0	0	0
Flunixin	Liver	231	0	0	0
Furazolidone	Liver	214	0	1	0.47
Sulfas	Liver	116	0	0	0
Thyreostats	Muscle	216	0	0	0
То	tal	1,837	1	1	0.05

Table 26a. Dairy Cows Summary2009 Domestic Scheduled Sampling Results

Table 26b. Dairy Cows Residue Levels2009 Domestic Scheduled Sampling Results

Compound Class		Tissue	Number of		Residue Levels Found in Samples			
	Unit		Samples	Violations	None	Not- Quanti Non-Vio	Not- Quanti Vio	
Antibiotics	ppm	Kidney	295	0	294	1	-	
Arsenic	ppm	Liver	277	0	277	-	-	
Chloramphenicol	ppb	Muscle	281	0	281	-	-	
Florfenicol	ppm	Liver	207	0	207	-	_	
Flunixin	ppb	Liver	231	0	231	-	-	
Furazolidone	ppb	Liver	214	1	213	-	1	
Sulfas	ppm	Liver	116	0	116	-	-	
Thyreostats	ppb	Muscle	216	0	216	-	_	

Table 26c. Dairy Cows Violations Report2009 Domestic Scheduled Sampling Results

Production Class	Compound Class	Residue	Tissue	Result	Unit
Dairy Cow	Furazolidone	Furazolidone	Liver	8888 ¹	ppb

Figure 31. Dairy Cows Summary 2009 Domestic Scheduled Sampling Results

¹ 8888 value indicates the result is violative, but not quantified. The residue levels were not determined because any amount of the identified residue constitutes a violation.

Ducks

FSIS laboratories analyzed 291 ducks samples and detected zero residue violations.

Compound Class	Tissue	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	51	0	0	0.00
Sulfas	Liver	240	0	0	0.00
Total		291	0	0	0.00

Table 27a. Ducks Summary2009 Domestic Scheduled Sampling Results

Table 27b. Ducks Residue Levels2009 Domestic Scheduled Sampling Results

Compound Class	Unit	Tissue	Number of Samples	Violations	Residue Levels Found in Samples None
Antibiotics	ppm	Kidney	51	0	51
Sulfas	ppm	Liver	240	0	240

Figure 32. Ducks Summary

2009 Domestic Scheduled Sampling Results

Formula-fed Veal

FSIS laboratories analyzed 1,161 samples from formula-fed veal and detected one violation for sulfadimethoxine.

Compound Class	Tissue	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	338	34	0	0.00
Avermectins	Liver	250	10	0	0.00
Sulfas	Liver	247	0	1	0.40
Trenbolone	Liver	246	0	0	0.00
Zeranol	Liver	80	0	0	0.00
Total		1,161	44	1	0.09

Table 28a. Formula-fed Veal Summary2009 Domestic Scheduled Sampling Results

Table 28b. Formula-fed Veal Residue Levels2009 Domestic Scheduled Sampling Results

Compound Class Unit Tiss			Numbe		Residue Levels Found in Samples								
	Tissue	r of Sample s	Viola tions	None	0.11- 0.20	0.21- 0.30	0.31- 0.50	0.51- 1.00	1.01- 2.51	2.51- 5.00	> 5.00	Not- Quanti Non- Vio ¹	
Antibiotics	ppm	Kidney	338	0	304	1	-	1	1	1	1	-	29
Avermectins	ppb	Liver	250	0	244	-	-	-	-	-	-	6	-
Sulfas	ppm	Liver	247	1	246	-	1	-	-	-	-		-
Trenbolone	ppm	Liver	246	0	246	-	-	-	_	-	-	-	_
Zeranol	ppb	Liver	80	0	80	-	-	-	-	-	-	-	_

¹ The residue levels were not determined because any amount of the identified residue does not constitute a violation.

Table 28c. Formula-fed Veal Violations Report2009 Domestic Scheduled Sampling Results

Production Class	Compound Class	Residue	Tissue	Result	Unit	
Formula fed Veal	Sulfas	Sulfadimethoxine	Liver	0.22	ppm	

Figure 33. Formula-fed Veal Summary 2009 Domestic Scheduled Sampling Results

Geese

FSIS laboratories analyzed 20 geese samples and detected zero residue violations. Table 29a summarizes the results of the testing by compound class.

Compound Class	Tissue	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	20	0	0	0.00
Tota	1	20	0	0	0.0

Table 29a. Geese Summary2009 Domestic Scheduled Sampling Results

Goats

FSIS laboratories analyzed 293 goat samples and detected one residue violation for avermectins.

Table 30a. Goats Summary2009 Domestic Scheduled Sampling Results

Compound Class	Tissue	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	63	0	0	0.00
Avermectins	Liver	86	0	1	1.16
beta-Agonists	Liver	49	0	0	0.00
Pesticides	Fat	95	1	0	0.00
Total		293	1	1	0.34

Table 30b. Goats Residue Levels2009 Domestic Scheduled Sampling Results

			Number of	Violations	Residue Levels Found in Samples			
Compound Class	Unit	Tissue	Samples	violations	None	0.11-0.20	> 5.00	
Antibiotics	ppm	Kidney	63	0	63	-	-	
Avermectins	ppb	Liver	86	1	85	-	1	
beta-Agonists	ppb	Liver	49	0	49	-	~	
Pesticides	ppm	Fat	95	0	94	1	-	

Table 30c. Goats Violations Report2009 Domestic Scheduled Sampling Results

Production Class	Compound Class	Residue	Tissue	Result	Unit
Goat	Avermectins	Ivermectin	Liver	145	ppb

Figure 34. Goats Summary 2009 Domestic Scheduled Sampling Results

Heavy Calves

FSIS laboratories analyzed 334 samples from heavy calves and detected one violation for sulfadimethoxine.

Compound Class	Tissue	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	68	10	0	0.00
Avermectins	Liver	81	0	0	0.00
Flunixin	Liver	132	0	0	0.00
Sulfas	Liver	53	0	1	1.89
Tota	1	334	10	1	0.30

Table 31a. Heavy Calves Summary2009 Domestic Scheduled Sampling Results

Table 31b. Heavy Calves Residue Levels2009 Domestic Scheduled Sampling Results

					Residue Levels Found in Samples					
Compound Class	Unit	Tissue	Number of Samples	Violations	None	0.21- 0.30	0.31- 0.50	0.51- 1.00	> 5.00	Not Quanti Not Vio
Antibiotics	ppm	Kidney	68	0	60	1	1	1	1	4
Avermectins	ppb	Liver	81	0	81	-	-	-	-	
Flunixin	ppb	Liver	132	0	132	-	-	-	-	-
Sulfas	ppm	Liver	53	1	52	_	1	-	-	-

Table 31c. Heavy Calves Violations Report2009 Domestic Scheduled Sampling Results

Production Class	Compound Class	Residue	Tissue	Result	Unit
Heavy Calves	Sulfas	Sulfadimethoxine	Liver	0.33	ppm

Figure 35. Heavy Calves Summary 2009 Domestic Scheduled Sampling Results

Heifers

FSIS laboratories analyzed 443 heifer samples and detected zero residue violations.

Compound Class	Tissue	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	256	2	0	0.00
Sulfas	Liver	187	0	0	0.00
Total		443	2	0	0.00

Table 32a. Heifers Summary2009 Domestic Scheduled Sampling Results

Table 32b. Heifers Residue Levels2009 Domestic Scheduled Sampling Results

Compound		Tissua	Number of	Violations	Residue	e Levels Found in Samples	
Class	Unit	Tissue	Samples	violations	None	0.51- 1.00	1.01-2.51
Antibiotics	ppm	Kidney	256	0	254	1	1
Sulfas	ppm	Liver	187	0	187	-	

Figure 36. Heifers Summary 2009 Domestic Scheduled Sampling Results

Lambs

FSIS laboratories analyzed 561 samples from lambs and detected zero residue violations.

Compound Class	Tissue	Number of Samples	Number of Non-violative Positives	Number of Violations	Percent Violations	
Antibiotics	Kidney	256	6	0	0.00	
Avermectins	Liver	188	3	0	0.00	
Pesticides	Fat	117	3	0	0.00	
Total		561	12	0	0.00	

Table 33a. Lambs Summary2009 Domestic Scheduled Sampling Results

Table 33b. Lambs Residue Levels2009 Domestic Scheduled Sampling Results

					Residue Levels Found in Samples						
Compound Class	Unit	Tissue	Number of Samples	Violations	None	0.11- 0.20	0.21- 0.30	0.31- 0.50	> 5.00	Not- Quanti Non- Vio ¹	
Antibiotics	ppm	Kidney	256	0	250	1	1	1	-	3	
Avermectins	ppb	Liver	188	0	185	-	-	-	3	-	
Pesticides	ppm	Fat	117	0	114	3	-	-	-	-	

Figure 37. Lamb Summary

2009 Domestic Scheduled Sampling Results

¹ The residue levels were not determined because any amount of the identified residue does not constitute a violation.

Market hogs

FSIS laboratories analyzed 1,610 market hogs samples and detected one residue violation of sulfamethazine.

Compound Class	Tissue	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	296	43	0	0.00
Arsenic	Liver	281	0	0	0.00
Avermectins	Liver	216	0	0	0.00
Carbadox	Liver	193	0	0	0.00
Furazolidone	Liver	221	0	0	0.00
Pesticides	Fat	302	3	0	0.00
Sulfas	Liver	101	0	1	0.99
Total		1,610	46	1	0.06

Table 34a. Market Hogs Summary2009 Domestic Scheduled Sampling Results

Table 34b. Market Hogs Residue Levels2009 Domestic Scheduled Sampling Results

					Residue Levels Found in San				
Compound Class	Unit	Tissue	Number of Samples	Violations	None	0.31- 0.50	0.51- 1.00	1.01- 2.51	Non-Quanti Non-Vio ¹
Antibiotics	ppm	Kidney	296	0	254	-	1	-	41
Arsenic	ppm	Liver	281	0	281	-	-	-	-
Avermectins	ppb	Liver	216	0	216	-	-	-	-
Carbadox	ppb	Liver	193	0	193	-	-	-	-
Furazolidone	ppb	Liver	221	0	221	-	-	-	-
Pesticides	ppm	Fat	302	0	299	3	-	-	-
Sulfas	ppm	Liver	101	1	100	-	-	1	-

¹ The residue levels were not determined because any amount of the identified residue does not constitute a violation.

Table 34c. Market Hogs Violation Report2009 Domestic Scheduled Sampling Results

Production class	Compound class	Residue	Tissue	Result	Unit
Market Hog	Sulfas	Sulfamethazine	Liver	1.66	ppm

Figure 38. Market Hogs Summary 2009 Domestic Scheduled Sampling Results

Mature Chickens

FSIS laboratories analyzed 910 samples from mature chickens and detected zero residue violations.

Compound Class	Tissue	Number of Samples	Number of Non-violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	336	7	0	0.00
Arsenic	Liver	312	0	0	0.00
Sulfas	Liver	262	0	0	0.00
Total		910	7	0	0.00

Table 35a. Mature Chickens Summary2009 Domestic Scheduled Sampling Results

Table 35b. Mature Chickens Residue Levels2009 Domestic Scheduled Sampling Results

Compound Class	Unit	Tissua	Number of	Violations	Residue Levels Found in Samples			
		Tissue	Samples	VIOLATIONS	None	0.51- 1.00	Not-Quanti Non-Vio	
Antibiotics	ppm	Kidney	336	0	329	1	6	
Arsenic	ppm	Liver	312	0	312	-	-	
Sulfas	ppm	Liver	262	0	262	-	-	

Figure 39. Mature Chicken Summary 2009 Domestic Scheduled Sampling Results

Mature Sheep

FSIS laboratories analyzed 449 mature sheep samples and detected zero residue violations.

Compound Class	Tissue	Number of Samples	Number of Non-violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	207	0	0	0.00
Avermectins	Liver	154	4	0	0.00
Pesticides	Fat	88	3	0	0.00
Total		449	7	0	0.00

Table 36a: Mature Sheep Summary2009 Domestic Scheduled Sampling Results

Table 36b: Mature Sheep Residue Levels2009 Domestic Scheduled Sampling Results

					Residue Levels Found in Samples					
Compound Class	Unit	Tissue	Number of Samples	Violations	None	0.01- 0.10	0.11- 0.20	0.21- 0.30	> 5.00	
Antibiotics	ppm	Kidney	207	0	207	-	-	-		
Avermectins	ppb	Liver	154	0	152	-	-	-	2	
Pesticides	ppm	Fat	88	0	85	1	1	1	-	

Figure 40: Mature Sheep Summary 2009 Domestic Scheduled Sampling Results

Mature Turkeys

FSIS laboratories analyzed 530 samples from mature turkeys and detected zero residue violations.

Compound Class	Tissue	Number of Samples	Number of Non-violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	264	6	0	0.00
Chloramphenicol	Muscle	266	0	0	0.00
Total		530	6	0	0.00

Table 37a. Mature Turkeys Summary2009 Domestic Scheduled Sampling Results

Table 37b. Mature Turkeys Residue Levels2009 Domestic Scheduled Sampling Results

	1				Re	esidue L Sa	evels Found in mples
Compound Class	Unit	Tissue	Number of Samples	er of ples Violations		0.51- 1.00	Not-Quanti Non- Vio
Antibiotics	Ppm	Kidney	264	0	258	1	5
Chloramphenicol	Ppb	Muscle	266	0	266	-	-

Figure 41. Mature Turkeys Summary 2009 Domestic Scheduled Sampling Results

Non-formula Fed Veal

FSIS laboratories analyzed 798 non-formula fed veal samples and detected five residue violations, which included one neomycin, one gentamicin sulfate, and three florfenicol.

Compound Class	Tissue	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	106	1	2	1.89
Avermectins	Liver	84	0	0	0.00
beta-Agonists	Liver	153	0	0	0.00
Florfenicol	Liver	102	0	3	2.94
Sulfas	Liver	85	0	0	0.00
Trenbolone	Liver	202	0	0	0.00
Zeranol	Liver	66	0	0	0.00
Total		798	1	5	0.63

Table 38a. Non-formula fed Veal Summary2009 Domestic Scheduled Sampling Results

Table 38b. Non-formula Fed Veal Residue Levels2009 Domestic Scheduled Sampling Results

					Res	idue Lev	els Foi	ind in Sa	mples
Compound Class	Unit	Tissue	Number of Samples	Violations	None	0.51- 1.00	1.01- 2.51	Non- Quanti Non- Vio ¹	Non- Quant i Vio ²
Antibiotics	ppm	Kidney	106	2	102	-	1	1	2
Avermectins	ppb	Liver	84	0	84	-	-	-	-
beta- Agonists	ppb	Liver	153	0	153	-	-	-	-
Florfenicol	ppm	Liver	102	3	99	2	1	-	-
Sulfas	ppm	Liver	85	0	85	-	-	-	-
Trenbolone	ppm	Liver	202	0	202	-	-	-	-
Zeranol	ppb	Liver	66	0	66	-	-	-	-

¹ The residue levels were not determined because any amount of the identified residue does not constitute a violation.

² The residue levels were not determined because any amount of the identified residue constitutes a violation.

Table 38c. Non-formula Fed Veal Violations Report2009 Domestic Scheduled Sampling Results

Production Class	Compound Class	Residue	Tissue	Result	Unit
Non-formula Fed Veal	Antibiotics	Neomycin	Kidney	8888	ppm
Non-formula Fed Veal	Antibiotics	Gentamicin Sulfate	Kidney	8888	ppm
Non-formula Fed Veal	Florfenicol	Florfenicol	Liver	0.68	ppm
Non-formula Fed Veal	Florfenicol	Florfenicol	Liver	0.99	ppm
Non-formula Fed Veal	Florfenicol	Florfenicol	Liver	2.11	ppm

Figure 42. Non-formula Fed Veal Summary 2009 Domestic Scheduled Sampling Results

Rabbits

FSIS laboratories analyzed 52 samples from rabbits and detected zero residue violations.

Compound Class	Tissue	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	52	34	0	0.00
Total		52	34	0	0.00

Table 39a. Rabbits Summary2009 Domestic Scheduled Sampling Results

Table 38b. Rabbits Residue Levels2009 Domestic Scheduled Sampling Results

Compound Class	Unit	Tissue	Number of	Violations	Residue Levels Found in Samples			
			Samples		None	Non-Quanti Non-Vio ¹		
Antibiotics	ppm	Kidney	52	0	19	33		

¹ The residue levels were not determined because any amount of the identified residue does not constitute a violation.

Roaster Pigs

FSIS laboratories analyzed 844 roaster pig samples and detected four residue violations, which included two carbadox, one PBDE, and one sulfamethazine.

Compound Class	Tissue	Number of Samples	Number of Non- violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	297	98	0	0.00
Carbadox	Liver	179	3	2	1.12
Pesticides	Fat	269	2	1	0.37
Sulfas	Liver	99	0	1	1.01
Total		844	103	4	0.47

Table 40a. Roaster Pigs Summary2009 Domestic Scheduled Sampling Results

Table 40b. Roaster Pigs Residue Levels2009 Domestic Scheduled Sampling Results

	Total		Residue Levels Found in Samples											
Compound Class	Compound Class Sar	Number of Samples	er Violations es	None	0.01- 0.10	0.11- 0.20	0.21- 0.30	0.31- 0.50	0.51- 1.00	1.01- 2.51	2.51- 5.00	> 5.00	Not- Quanti Non- Vio ¹	
Antibiotics	ppm	Kidney	297	0	211	-	2	3	1	1	-	1	_	78
Carbadox	ppb	Liver	179	2	174	-	-	-	-	-	-	-	5	-
Pesticides	ppm	Fat	269	1	266	2	-	-	-	-	1	-	-	-
Sulfas	ppm	Liver	99	1	98	-	-	-	-	-	1	-	-	-

¹ The residue levels were not determined because any amount of the identified residue does not constitute a violation.

Table 40c. Roaster Pigs Violations Report2009 Domestic Scheduled Sampling Results

Production Class	Compound Class	Residue	Tissue	Result	Unit
Roaster Pigs	Carbadox	Carbadox	Liver	53	ppb
Roaster Pigs	Carbadox	Carbadox	Liver	55	ppb
Roaster Pigs	Pesticides	PBDE	Fat	1.43	ppm
Roaster Pigs	Sulfas	Sulfamethazine	Liver	2.39	ppm

Figure 43. Roaster Pigs Summary 2009 Domestic Scheduled Sampling Results

Sows

FSIS laboratories analyzed 466 samples from sows and detected zero residue violations.

Table 41a. Sows Summary2009 Domestic Scheduled Sampling Results

Compound Class	Tissue	Number of Samples	Number of Non-violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	257	23	0	0.00
Furazolidone	Liver	209	0	0	0.00
Total		466	23	0	0.00

Table 41b. Sows Residue Levels2009 Domestic Scheduled Sampling Results

Compound Class	Unit	Tingua	Number of	372-1-42	Residue Levels Found in Samples				
	Unit	Tissue	Samples	violations	None	0.51- 1.00	Non-Quanti Non-Vio ¹		
Antibiotics	ppm	Kidney	257	0	237	ï	19		
Furazolidone	ppb	Liver	209	0	209	-	-		

Figure 44. Sows Summary

2009 Domestic Scheduled Sampling Results

¹ The residue levels were not determined because any amount of the identified residue does not constitute a violation.

Steers

FSIS laboratories analyzed 1,387 Steers samples and detected two residue violations for gentamicin sulfate.

Compound Class	Tissue	Number of Samples	Number of Non-violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	293	0	2	0.68
Avermectins	Liver	221	0	0	0.00
beta-Agonists	Liver	170	2	0	0.00
Chloramphenicol	Muscle	264	0	0	0.00
Pesticides	Fat	269	5	0	0.00
Sulfas	Liver	170	0	0	0.00
Total		1,387	7	2	0.14

Table 42a. Steers Summary2009 Domestic Scheduled Sampling Results

Table 42b. Steers Residue Levels2009 Domestic Scheduled Sampling Results

						Resid	ue Lev	els Fo	und i	n Sampl	es
Compound Class	Unit	Tissue	Number of Samples	Violations	None	0.11- 0.20	0.21- 0.30	0.51- 1.00	> 5.00	Not- Quanti Non- Vio	Not- Quanti Vio
Antibiotics	ppm	Kidney	293	2	289	-	-	-	-	2	2
Avermectins	ppb	Liver	221	0	221	-	_	-	-	-	-
beta-Agonists	ppb	Liver	170	0	169	-	-	-	1	-	-
Chloramphenicol	ppb	Muscle	264	0	264	-	-	-	-	-	-
Pesticides	ppm	Fat	269	0	264	3	1	1	-	-	-
Sulfas	ppm	Liver	170	0	170	-	-	-	-	-	-

Table 42c. Steers Violation Report2009 Domestic Scheduled Sampling Results

Production Class	Compound Code	Test Code	Tissue Code	Result	Unit
Steers	Antibiotics	Gentamicin Sulfate	Kidney	8888	ppm
Steers	Antibiotics	Gentamicin Sulfate	Kidney	8888	ppm

Figure 45. Steers Summary 2009 Domestic Scheduled Sampling Results

Young Chickens

FSIS laboratories analyzed 1,520 samples from young chickens and detected zero residue violations.

Compound Class	Tissue	Number of Samples	Number of Non-violative Positives	Number of Violations	Percent Violations
Antibiotics	Kidney	321	5	0	0.00
Arsenic	Liver	324	84	0	0.00
Chloramphenicol	Muscle	311	0	0	0.00
Nitroimidazoles	Muscle	316	0	0	0.00
Sulfas	Liver	248	0	0	0.00
Total		1,520	89	0	0.00

Table 43a. Young Chickens Summary2009 Domestic Scheduled Sampling Results

Table 43b. Young Chickens Residue Levels2009 Domestic Scheduled Sampling Results

Compound Class			Number		Residue Levels Found in Samples						
	Unit	Tissue	of Samples	Violations	None	0.11- 0.20	0.21- 0.30	0.31- 0.50	0.51- 1.00	1.01- 2.51	Not- Quanti Non-Vio
Antibiotics	ppm	Kidney	321	0	316	-	-	1	-		4
Arsenic	ppm	Liver	324	0	240	1	32	35	14	2	-
Chloramphenicol	ppb	Muscle	311	0	311	-	-	-	-	-	-
Nitroimidazoles	ppm	Muscle	316	0	316	=				-	-
Sulfas	ppm	Liver	248	0	248	-	~	-	>=5	-	×

Figure 46. Young Chickens Summary 2009 Domestic Scheduled Sampling Results

[103]

Young Turkeys

FSIS laboratories analyzed 827 young turkey samples and detected zero residue violations in antibiotics, nitroimidazoles, and sulfas.

Compound Class	Uni t	Tissue	Number of Samples	Number of Non-violative Positives	Number of Violations	Percent Violations
Antibiotics	ppm	Kidney	325	14	0	0.00
Nitroimidazoles	ppm	Muscle	317	0	0	0.00
Sulfas	ppm	Liver	185	0	0	0.00
Total			827	14	0	0.00

Table 44a. Young Turkeys Summary2009 Domestic Scheduled Sampling Results

Table 44b. Young Turkeys Residue Levels2009 Domestic Scheduled Sampling Results

					Residue Levels Found in Samples					
Compound Class	Unit	Tissue	Number of Samples	Violations	None	0.21- 0.30	0.51- 1.00	1.01- 2.51	Not- Quanti Non- Vio	
Antibiotics	ppm	Kidney	325	0	311	1	1	2	10	
Nitroimidazoles	ppm	Muscle	317	0	317	-	-	-	-	
Sulfas	ppm	Liver	185	0	185	-	-	2	Ξ	

Figure 47. Young Turkeys Summary 2009 Domestic Scheduled Sampling Results

[104]

Scheduled Sampling – Exploratory Assessments

Environmental Contaminants (Cadmium and Lead)

FSIS conducted an exploratory survey of the prevalence of environmental contaminants, specifically cadmium and lead, in dairy cows. Muscle and kidney samples with cadmium levels below the Minimum Proficiency Level ¹ (i.e., 10 ppb for cadmium and 25 ppb for lead) are labeled non-detect (ND) in Tables 45 and 46. Table 45 presents the number of positives and ND samples by metal and tissue analyzed.

Table 45. Number of Positive and Non-detect Dairy Cows Samples Analyzed for Cadmium and Lead, 2009 Exploratory Assessments Results

			Samples	
Environment	al Contaminants	Non- detect	Positive ²	Total
М	letal			
	Kidney	0	276	276
Cadmium	Muscle	275	1	276
	Total for Cadmium	275	277	552
	Kidney	130	146	276
Lead	Muscle	273	3	276
	Total for Lead	403	149	552

¹Minimum Proficiency Level: The minimum concentration of a residue at which an analytical result will be used to assess a laboratory's quantification capability

² Positive samples have detectable Minimum Proficiency Levels above 10 ppb for cadmium and 25 ppb for lead.

Table 46 presents the statistical analysis of the cadmium and lead levels detected in dairy cow muscle and kidney samples. Table values in red font were calculated using the positive and non-detect samples. With these calculations, a default level of zero was used for non-detects. All other values presented in the table (black font) are applicable to positive samples only.

Metal	Tissue	Number of Samples	Number of Positive Samples	Percent of Positive Samples	Levels Range (ppb)	Median Levels (ppb)	Mean Levels (ppb)	Standard Deviation	95 th percen tile
Cadmium	Kidney	276	276	100%	68.49 - 5,956	299.80	435.20	572.5	1,155
Cadmium	Muscle	276	1	0.36%	12.61-12.61	12.61	12.61	N/A	12.61
Lead	Kidney	276	146	52.9%	25.01 - 1,212 0.00 -1,212	39.93 26.70	61.01 32.27	105.0 82.12	137.10 97.84
Lead	Muscle	276	3	1.09%	31.67 - 69.99 0.00 - 69.99	50.23 0.00	50.63 0.55	19.16 5.51	69.99

Table 46. Statistical Analysis of the Cadmium and Lead Levels in Kidneys and Muscles from Dairy Cows, 2009 Exploratory Assessments Results
INSPECTOR-GENERATED SAMPLING

Suspect Animals

Public Health Veterinarians (PHVs) conduct Inspector-generated sampling of suspect animals when an animal is suspected to maintain violative levels of chemical residues. Sample screening utilizes the Fast Antimicrobial Screen Test (FAST) or the Kidney Inhibition Swab Test (KISTM). If FAST or KISTM kits are not available, the PHV submits the sample to the FSIS laboratory for testing. FSIS incorporated the KISTM kit in July 2009. KISTM will eventually be the primary in-plant screening test for the agency.

Inspector-Generated sampling results are presented in two tables and a figure:

- Table 47 summarizes the total number of samples analyzed (or screened) and the number of animals with violations for each production class.
- Table 48 identifies the results for specific compounds that were detected (violative) within the production class across Inspector-enerated projects (i.e., FAST, KISTM, COLLGEN, and STATE).
- Figure 48 consists of a series of pie charts that examine the distribution of residue violations by identified project and chemical residues.

1. Samples Screened In-plant and Confirmed in a FSIS Laboratory

Fast Antimicrobial Screen Test (FAST)

FSIS used FAST kits to screen 81,855 samples for antibiotic and sulfonamide residues. Samples that tested positive were analyzed for flunixin, a non-steroidal anti-inflammatory compound. FSIS laboratories confirmed 951 violations in 688 animals. The residue violations included 16 ampicillin, one chlortetracycline, 108 desfuroylceftiofur (DCA or DCCD), one dihydro streptomycin, 159 flunixin, 70 gentamycin sulfate, 84 neomycin, 38 oxytetracycline, 286 penicillin, one phenylbutazone, 4 sulfadiazine, 97 sulfadimethoxine, 49 sulfamethazine, 11 sulfamethoxazole, 10 tetracycline, and 16 tilmicosin. FAST violation results are represented in Figure 49 and Table 49.

Kidney Inhibition Swab (KISTM) Test

FSIS used KIS[™] kits to screen 69,219 samples for antibiotic and sulfonamide residues. Samples that tested positive were analyzed for flunixin, a non-steroidal anti-inflammatory compound. FSIS laboratories confirmed 535 violations in 401 animals. The residue violations included two ampicillin, 33 desfuroylceftiofur (DCA or DCCD), 78 flunixin, 46 gentamycin sulfate, 71 neomycin, 15 oxytetracycline, 90 penicillin, two phenylbutazone, two sulfadiazine, 80 sulfadimethoxine, 40 sulfamethazine, 14 sulfamethoxazole, One sulfathiazole, 17 tetracycline, 23 tilmicosin, and 21 tulathromycin. KIS[™] violations results are represented in Figure 50 and Table 50.

2. Samples Confirmed in an FSIS Laboratory

COLLGEN

FSIS analyzed samples collected from 142 animals for antibiotic and sulfonamide residues. FSIS laboratories confirmed 20 violations in 15 animals. The residues included one chlortetracycline, three desfuroylceftiofur (DCA or DCCD), five flunixin, three gentamycin sulfate, two neomycin, three penicillin, and three sulfamethazine.

Samples collected from one heifer and one steer sample were analyzed for trenbolone. No violations were found. Similarly, one young turkey sample was tested for arsenic, lead, and cadmium. No violations were found. FSIS analyzed samples from five market hogs for *beta*-agonists. Furthermore, one bovine was tested for sulfas and one calf was tested for avermectin. No violations were found in these samples. COLLGEN violations results are represented in Figure 51 and Table 51.

.STATE (State or Government Agency Testing)

Analyses were conducted for antibiotic and sulfonamide residue in seven animals: one bob veal, four market hogs, and two steers. One neomycin residue violation was detected in bob veal.

Additional Inspector-generated sampling results are detailed in Tables 52 to 55.

Table 47. Summary Results, 2009 Inspector-Generated Sampling (by Project ID) Antibiotics, Sulfonamide and Non-steroidal Anti-inflammatory (NSAID) Compound¹

	COLI	LGEN ²	FA	ST ¹	KIS	TM 1	ST	ATE ²
Production Class	Number of Samples	Number of Animals With Confirmed Lab Violations	Number of In-plant (screened) Samples	Number of Animals With Confirmed Lab Violations	Number of In-plant (screened) Samples	Number of Animals With Confirmed lab Violations	Number of Samples	Number of Animals With Confirmed lab Violations
Beef Cows	19	1	7,437	36	3,155	16	0	0
Boars/Stags	1	0	206	0	5	0	0	0
Bob Veal	26	0	14,046	100	23,427	149	1	1
Bovine	0	0	0	0	0	0	0	0
Bulls	9	1	1,085	8	348	0	0	0
Dairy Cows	54	10	40,533	518	39,504	222	0	0
Formula-fed Veal	1	0	481	2	390	0	0	0
Goats	1	1	293	3	6	0	0	0
Heavy Calves	0	0	179	8	328	6	0	0
Heifers	4	0	1,144	5	687	6	0	0
Lambs	0	0	707	0	15	0	0	0
Market Hogs	11	0	9,132	0	42	0	4	0
Mature Sheep	0	0	224	0	0	0	0	0
Non-formula-fed Veal	0	0	120	2	112	0	0	0
Roaster Pigs	0	0	283	0	3	0	0	0
Sows	11	1	2,658	0	7	0	0	0
Steers	8	1	2,959	5	1,190	2	2	0
Other*	7	0	368	1	0	0	0	0
Total	152	15	81,855	688	69,219	401	7	1

¹ In the Inspector-generated Sampling plan, samples that produce a FAST and/or KISTM positive in the plant are further analyzed for flunixin and phenylbutazone (non-steroidal anti-inflammatory compounds) in the laboratory.
 ² COLLGEN and STATES samples tested for antibiotics and sulfonamides.

Table 48. Distribution of Residue Violations, Chemical Residue, and Animal Class by Project ID 2009 Inspector-Generated Sampling

BOD Veal	-	20	1	-		100.5							_						1
STATE	Pencillin	Tetracycline	Neomycin	Oxytet racy- cline	Chlort etrac- ycline	Gentam ycin- Sulfate	Tilmicosin	Tulathro m-ycin	Dihydro Strepto my-cin	Ampicillin	DCA or DCCD	Sulfadi meth- oxine	Sulfam etha- zine	Sulfat hiaz- ole	Sulfa diaz- ine	Sulfa metho xazol- e	Phenylb utazo-ne	Flunixin	Total By Project I
	90	17	71	15	0	46	23	21	0	2	33	80	40	1	2	14	2	78	535
Steers	1											1						1	3
Heifers	2				_						1	2	2				-		7
Heavy Calves						3						100	3			-			6
Dairy Cows	83	1	1	3		13	8	3		2	29	66	18				1	61	289
Bob Veal	4	16	69	9		28	11	18			3	6	12	1	2	14	1	13	207
Beef Cows			1	3		2	4	1				5	5			e		3	23
KIS	Pencillin	Tetracycline	Neomycin	Oxytet racy- cline	Chlort etrac- ycline	Gentam ycin- Sulfate	Tilmicosin	Tulathro m-ycin	Dihydro Strepto my-cin	Ampicillin	DCA or DCCD	Sulfadi meth- oxine	Sulfam etha- zine	Sulfat hiaz- ole	Sulfa diaz- ine	Sulfa metho xazol-	Phenylb utazo-ne	Flunixin	Total By Project I
	286	10	84	38	1	70	16	0	1	16	108	97	49	0	4	11	1	159	951
Other				-						-	1		2						6
Steers	2		1	1							1							1	2
on-formula Fed Veal	-					-					1	2	2	-					8
Heifers	1				-	1						1	-					6	15
Hearty Calves	2			4	L	-								-				-	5
Costs				4	-						1							1	2
Cormula Ead Vort	251	10	18	11		54	12		1	15	95	80	29				1	128	705
BOD Veal	7	10	63	8		4				1	7	12	7		4	11		16	140
Bulls	8			3									1						12
Beef Cows	15		2	7		10	3				1	2	8					6	54
FAST	Pencillin	Tetracycline	Neomycin	Oxytet racy- cline	Chlort etrac- ycline	Gentam ycin- Sulfate	Tilmicosin	Tulathro m-ycin	Dihydro Strepto my-cin	Ampicillin	DCA or DCCD	Sulfadi meth- oxine	Sulfam etha- zine	Sulfat hiaz- ole	Sulfa diaz- ine	Sulfa metho xazol- e	Phenylb utazo-ne	Flunixin	Total By Project
	3	0	2	0	1	3	0	0	0	0	3	0	3	0	0	0	0	5	20
Sow			1															_	1
Steers											1								1
Goats					1														1
Dairy Cows	2		1			1					2		3					5	13
Bulls	1																		1
Beef Cows						3										e	<u> </u>		2
COLLGEN	Pencillin	Tetracycline	Neomycin	racy- cline	etrac- ycline	ycin- Sulfate	Tilmicosin	Tulathro m-ycin	Strepto my-cin	Ampicillin	DCA or DCCD	meth- oxine	etha- zine	hiaz- ole	diaz- ine	metho xazol-	Phenylb utazo-ne	Flunixin	Total By Project

Antibiotics, Sulfonamide and Non-steroidal Anti-inflammatory (NSAID) Compound

TOTAL Violations: 1507

[110]

Figure 48. Distribution of Residue Violations by Project ID and Selected Chemical Residue 2009 Inspector-Generated (IG) Sampling Results

[111]

Data Source: FSIS Data Warehouse

[112]

FAST	Viola	ations Count	/ Percenta	ige
Violations by	(Plant Stat	te vs. Produ	ction State	e) Status
Selected U.S.	Matched	Not-	N/A	Total
States		Matched		
California	238	13	3	254
California	(94 %)	(5^{0}_{0}) .	(1%)	234
Georgia	2	28	0	30
	(7%)	(93%)	(0^{-6})	50
Idaho	14	0	0	14
	(100%)	(0.%)	(0 0 0)	
Missouri	12	14	0	26
	(46%)	(54%)	(1) ¹⁰ / ₀)	
Minnesota	13	4	0	17
	1 (8:20)	(24 %u) 15	(0 %)	-
New Jersey	(0%)	(100%)	(0 %a).	15
New Vork	10	4	0	14
INCW I UIK	(71%)	(29%)	(0°0).	14
Ohio	10	8	0	18
	(56%)	$(44\%_{0})$	(0 %)	10
Pennsylvania	12	5	181	198
	(6.%)	(3%)	(91%)	150
South Carolina	1	14	0	14
	(7%)	(93%)	(0.%)	
Texas	31	22	0	53
	(59%)	(41%)	(0, %_)	
Washington	26	2	1	29
	112	100	(7%)	
Wisconsin	(51%)	(49 %)	(0/%a)	221
Other States	32	15	0	17
Other States	(68%)	(32%)	(0:%)	4/
TOTAL	513	253	185	951

Overall, 54% of FAST violations showed matching status between production ptate (i.e., the last location of the animal prior to slaughter) and the plant state. California, Wisconsin, and Pennsylvania are the top three states that reported FAST violations. A correlation is likely between the state violations and slaughter volume per animal class. The plant state and the production state were matched for most of the FAST-violations states except in Georgia, New Jersey, and South Carolina. Almost all of Pennsylvania violations lack state information.

N/A: means last location of animal before prior to slaughter information is not available.

[113]

Figure 50. Location of KISTM Violations by U.S States 2009 Inspector-Generated Sampling Results

Data Source: FSIS Data Warehouse

[114]

KIS™ Violations by	Viol: (Plant Sta	ations Count te vs. Produ	t / Percenta ction State	ige) Status
Selected U.S. States	Matched	Not- Matched	N/A	Total
California	98 (96%)	4 (4%)	0 (0%)	102
New York	11 (79%)	0 (0%)	3 (21%)	14
Ohio	165 (96 %)	5 (4%)	0 (0%)	170
Pennsylvania	1 (2%)	1 (2%)	49 (96%)	51
South Carolina	2 (14%)	12 (86%)	0 (0%)	14
Texas	33 (89%)	4 (11%)	0 (0%)	37
Washington	7 (54%)	6 (46%)	0 (0%)	13
Wisconsin	48 (50%)	48 (50%)	0 (0%)	96
Other States*	31 (82%)	7 (18%)	0 (0%)	38
TOTAL	396	87	52	535

Table 50. KISTM Violations by Plant State vs. Produce State Matching Status 2009 Inspector-Generated Sampling Results

About 74% of KISTM violations showed matching status between the production state (i.e., the last location of the animal before slaughter) and the plant state. Ohio, California, and Wisconsin are the top three states per KISTM violations. A correlation is likely between the state violations and slaughter volume per animal class. The plant state and the production state were matched for many KISTM violations states, except in South Carolina.

N/A means last location of animal before prior to slaughter information is not available

[115]

Figure 51. Location of COLLGEN Violations by U.S States 2009 Inspector-Generated Sampling Results

Data Source: FSIS Data Warehouse

[116]

COLLGEN Violations by	Violat (Plant Sta	tions Count / ite vs. Produ	Percentage	e %) Status
U.S. States	Matched	Not- Matched	N/A	Total
California	2 (100%)	0 (0%)	0 (0%)	2
Georgia	0 (0%)	1 (100%)	0 (0%)	1
Idaho	2 (100 %)	0 (0%)	0 (0%)	2
Illinois	0 (0%)	1 (100%)	0 (0%)	1
Nebraska	1 (100%)	0 (0%)	0 (0%)	1
North Carolina	0 (0%)	2 (100%)	0 (0%)	2
Ohio	1 (25%)	3 (75%)	0 (0%)	4
Tennessee	0 (0%)	1 (100%)	0 (0%)	1
Wisconsin	6 (100%)	0 (0%)	0 (0%)	6
TOTAL	12	8	0	20

 Table 51. COLLGEN Violations by Plant State vs. Production State Matching Status

 2009 Inspector-Generated Sampling Results

[117]

Table 52. Distribution of Residue Violations, Chemical Residue, and Status (Production vs. Plant) U.S. States by Project ID 2009 Inspector-Generated (IG) Sampling

COLLGEN	Pencillin	Tetracycline	Neomycin	Oxytetra	Chlorietrac	Gentamycin	Tilmicosin	Tulathromesin	Dihydro	Ampicillia	DCA er DCCD	Sulfadimethox	Sulfamethaz	Sulfathia	Sulfadiaz	Sulfamethoxaz	Phenylbu		
				cycline	ycline	Sulfate		1	Streptomycin	Compromite	DON OF DOOD	ine	ine	zole	ine	ole	tazone	Fluruxin	Total By Project IO
Matched	2		1		0	0					1		3					5	12
Not Matched	1		1		1	3					z		0					0	8
N/A																			0
	3	0	2	0	1	3	0	0	0	0	3	0	з	Q	0	Q	0	5	20
FAST	Pencillin	Tetracycline	Neomycin	Oxytetra cycline	Chlortetrac ycline	Gentamycin Sulfate	Tilmicosin	Tulathromycin	Dihydro Streptomycin	Ampicillin	DCA or DCCD	Sulfadimethox ine	Sulfamethaz ine	Sulfathia zole	Sulfadiaz ine	Sulfamethoxaz ole	Phenylbu tazone	Flunizin	Total By Project ID
Matched	138	6	48	23	0	27	7		1	12	61	66	22		4	11	1	86	513
Not Matched	71	2	9	15	1	29	9		0	2	28	21	21		0	0	D	45	253
N/A	77	2	27	0	0	14	0		o	2	19	10	6		0	0	0	28	185
	286	10	84	38	1	70	16	0	1	16	108	97	49	0	4	11	1	159	951
KIS	Pencillin	Tetracycline	Neomycin	Oxytetra cycline	Chlortetrac ycline	Gentamycin Sulfate	Tilmicosin	Tulathromycin	Dihydro Streptomycin	Ampicillin	DCA or DCCD	Sulfadimethox ine	Sulfamethaz Ine	Sultathia zole	Sulfadiaz ine	Sulfamethoxaz ole	Phenyfbu tazone	Flunixin	Total By Project ID
Matched	48	17	66	11		35	17	18		2	21	63	33	1	0	11	1	52	205
Not Matched	23	0	з	4		6	5	3		0	7	10	5	0	2	2	0	17	87
N/A	19	0	2	0		5	1	0		0	5	7	2	0	0	1	1	G	57
	90	17	71	15	0	46	23	21	0	2	33	80	40	1	7	14	2	78	525
STATE	Pencillin	Tetracycline	Neomycin	Oxytetra cycline	Chlortetrac ycline	Gentamycin Sulfate	Tilmicosin	Tulathromycin	Dihydro Streptomycin	Ampicillin	DCA or DCCD	Sulfadimethox	Sulfamethaz	Sulfathia zole	Sulfadiaz Ine	Sulfamethoxaz	Phenytbu tazone	Flunixin	Total By Project ID
Matched			1																1
Not Matched																			0
N/A																			0
Total by Residue	379	27	158	53	2	119	39	21	1	18	144	177	92	1	6	25	3	242	N N

Antibiotics, Sulfonamide and Non-steroidal Anti-inflammatory (NSAID) Compound * Plant State vs. Produce State, match status, *

TOTAL Violations: 1507

[118]

Table 53. Distribution of Residue Violations, Chemical Residue, and selected U.S. States by Project ID 2009 Inspector-Generated Sampling

Antibiotics, Sulfonamide and Non-steroidal Anti-inflammatory (NSAID) Compound

					* Selecte	d U.S. Pla	nt States *	
COLLGEN	Chlortetrac ycline	Desturoyicet tiofur (DCA or DCCD)	Flunixin	Gentainycin Sulfate	Neomycin	Penicillin	Sulfamethazine	Total By U.S STAT
CA	0	0	0	0	0	D	2	2
GA	0	0	0	0	0	1	O	1
10	0	0	1	0	0	1	0	2
iL	1	0	0	0	0	0	0	1
NC.	0	. 2	0	0	0	0	Ö	2
NE	0	1	0	0	0	0	0	1
OH	0	0	1	З	0	0	0	4
TN	0	0	0	0	1	D	0	1
Wi	0	0	3	0	1	1	1	6
tal by Residue	1	3	5	з	2	3	3	20

FAST	Ampicitiin	Chlortetracy cline	Desturoyic efficient (DCA or DCCD)	Dihydro Streptomycin	Fluitin	Gentamycin Suffate	Neomycin	Oxytetracycline	Penicifiin	Prienyltud azone	Sulfadiazine	Sultadime thorine	Sulfamethazine	Sulfamethoxazole	Tetracycline	Tilmicosin	Total By U.S STATE
CA	2	0	34	0	40	8	31	5	69	0	4	38	12	7	3	1	254
GA	0	0	1	0	3	7	1	5	6	0	0	D	6	0	0	1	30
ID	0	0	2	0	1	1	1	0	6	0	0	2	0	0	0	1	14
Mi	1	0	3	0	7	3	3	1	2	0	0	3	1	2	0	0	26
MN	1	0	1	0	2	1	0	0	9	0	0	3	0	0	0	0	17
NJ	0	0	3	0	5	0	0	2	3	0	0	2	0	0	0	0	15
NY	0	0	0	0	з	0	1	5	4	0	0	1	0	0	0	0	14
OH	0	0	0	0	2	2	2	3	6	0	0	1	2	0	0	0	18
PA	2	0	20	0	30	14	28	з	81	0	0	12	6	0	2	0	198
SC	0	0	0	0	2	2	Ó	Э	4	0	O	2	2	0	0	0	15
TX	0	0	4	0	7	2	4	З	19	0	0	7	3	2	0	2	53
WA	D	0	2	0	2	1	2	1	16	0	0	0	0	0	3	2	29
Wh	10	0	33	1	53	25	з	2	45	1	0	22	15	0	2	9	721
* Other U.S. States	0	1	5	0	2	4	8	5	16	0	0	4	2	0	0	0	47
Total by Residue	16	1	108	1	159	70	84	38	286	1	4	97	49	11	10	16	951

KIS	Ampiciliin	Desturoyloef tiofur (DCA ar DCCD)	Flunkin	Gentamycin Sulfate	Neomycin	Geytetracycfi IN	Penicillin	Phony(butazone	Sulfadiazine	Sulfadime thoxine	Sulfamethazine	Sulfamet Isoxazole	Sulfathiazole	Tetracycline	Timicasin	Tulathconsycin	Total BY U.S STATE
CA	1	10	13	з	1	2	32	0	2	30	7	0	0	0	1	0	102
NY	0	1	1	5	5	0	1	0	0	0	0	1	0	0	0	0	14
OH	0	1	11	21	61	9	З	1	0	4	5	11	1	16	11	15	170
PA	D	5	9	5	1	0	20	1	0	7	2	0	0	0	1	0	51
SC	0	0	0	2	0	3	3	0	0	1	3	0	0	0	2	0	14
TX	0	1	4	2	3	0	з	0	0	10	8	2	0	0	1	3	37
WA	0	4	3	0	0	0	3	0	0	з	0	0	0	0	0	0	13
WI	1	7	29	6	0	1	19	0	0	19	6	0	0	1	4	3	96
• Other U.S. States	0	4	8	2	G	0	6	0	0	6	9	0	0	0	з	0	38
Total by Residue	2	33	78	46	71	15	90	2	2	80	40	14	1	17	23	21	535

[119]

					* Select * One C	ed U.S. F arcass n	Plant States *
COLLGEN	Beef Cows	Bulls	Dairy Cows	Goats	Sows	Steers	Total By U.S STATE
CA	0	0	2	0	0	0	2
GA	0	1	0	0	0	0	1
ID	0	0	2	0	0	0	2
IL.	0	0	0	1	0	0	1
NC	0	0	2	0	0	0	2
NE	0	0	0	0	0	1	1
ОН	з	0	1	0	0	0	4
TN	0	0	0	0	1	0	1
WI	0	o	6	0	0	0	6
al by Animals	3	1	13	1	1	1	20

Table 54.	Distribution of Residue	Violations, Anim	al Class.	and Selected	U.S.	States by	Project ID
2009 Insp	ector-Generated Sampli	ng					5

FAST	Beef Cows	Bob Veal	Bulls	Dairy Cows	Formula Fed Veal	Goats	Heavy Calves	Heifers	Non- formula Fed Veal	Steers	*Others	Total By U.S STATE
CA	0	56	1	188	0	0	4	3	0	2	0	254
GA	16	0	4	5	0	0	5	0	0	0	0	30
ID	3	0	0	10	0	0	0	0	0	1	0	14
MI	6	7	0	13	0	0	0	0	0	0	0	26
MN	0	0	0	17	0	0	0	0	0	0	0	17
LN	3	0	0	12	0	0	0	0	0	0	0	15
NY	0	8	0	4	0	2	0	0	0	0	0	14
OH	3	7	0	8	0	0	0	0	0	0	0	18
PA	0	37	2	155	1	2	0	0	1	0	0	198
SC	0	0	1	14	0	0	0	0	0	0	0	15
TX	6	11	4	23	0	0	5	3	0	1	0	53
WA	0	2	0	26	0	0	0	1	0	0	0	29
WI	9	0	0	209	1	0	0	0	0	2	0	221
Other U.S. States	8	12	0	21	0	1	1	1	1	0	2	47
fotal by Animals	54	140	12	705	2	5	15	9	2	6		OE 3

KIS	Beef Cows	Bob Veal	Dairy Cow	Heavy Calves	Heiters	Steers	Total By U.S STATE
CA	0	3	97	2	0	0	102
NY	0	14	0	0	0	0	14
OH	0	170	0	0	0	0	170
PA	0	0	51	0	0	0	51
SC	8	0	6	0	0	0	14
ТХ	7	20	7	0	3	0	37
WA	0	0	12	0	1	0	13
WI	4	0	89	0	1	2	96
* Other U.S. States	4	0	27	4	2	1	38
Fotal by Animals	23	207	289	6	7	3	535

[120]

ars /Stags	tes	itags Bob veal	Bulls	Dairy cows	Formula-fed veal	Reavy calves	Holfers	Non-formula fed veal	Steers
nk / Pct%	R	Pct% Rank / Pct%	Rank / Pct%	Rank / Pct%	Rank / Pet%	Rank / Pets	Rank / Peth	Rank / Pct%	Rank / Pct%
14		1	5	2	N/A	1	9	8	5
		44%	6%	22%		41%			5%
41		N/A	4	12	N/A	6	26	N/A	27
	-		8%						
36		N/A	8	6	N/A	34	13	N/A	15
5		8	31	33	5	8	5	12	7
3%	_				7%		4%		
12		19	22	7	6	N/A	16	19	9
21		22	3	10	8	23	10	22	14
			11%					2.9	14.55
В	1	10	Z	9	12	4	33	13	23
						3%			2.5
38	÷.,	N/A.	2	17	N/A	38	2	N/A	2
			1:496				25%		22%
10		10	17	19	3	В	31	3	17
	-				16%	15%		8%	1
18		2	20	16	7	10	20	4	19
		29%						7%	
4	1	3	19	18	4	41	19	14	21
5%	_	10%			14%				
2		.15	10	3	1	15	13	5	10
29%		· · · · · · · · · · · · · · · · · · ·		13%	3.4%			5%	
20		N/A	9	45	N/A	27	44	N/A	43
25	1	N/A	21	22	N/A	14	34	N/A	28
3		4	1	4	N/A	- 2	3	24	3
796		7%	22%	8%		21%	21%		21%
46		6	14	8	N/A	37	6	N/A	8
7		N/A	6	1	2	5	12		6
				25%	22%	3%		41%	0
a) 56%		% (b) 10%	39%	(c) 32%	7%	17%	(d) 50%	(e) 39%	(f) 52%
a) 5	Stags V	6	N/A (b) 10%	N/A 6 (b) 10% 39% (d) X3 rayled 11t -	///A 6 1 16% (b) 10% 39% (c) 32% (d) f5 ranked 1it Heiters, Volume In. Volume In. Volume In.	N/A 6 1 2 16% (b) 10% 39% (c) 32% 7% (d) K1 maked 1st; Helfers, Volume in 2005 (27.5) -	N/A 6 1 2 5 10% 25% 22% 3% 3% 16% (b) 10% 39% (c) 32% 7% 17% (d) % ranked 1% Heiters, Volume in 2003 (27%)	1//A 6 1 2 5 12 25% 22% 3% </td <td>1 2 5 12 1 7//A 6 1 2 5 12 1 65% 25% 22% 3% 41% 41% 16% (b) 10% 39% (c) 32% 7% 17% (d) 50% (e) 39% (d) 51 maked 1st clifters: Volume in 2009 (27.5) (c) 10% 10% (c) 10% maked 2th; tent formula for yeal. Volume in 2009</td>	1 2 5 12 1 7//A 6 1 2 5 12 1 65% 25% 22% 3% 41% 41% 16% (b) 10% 39% (c) 32% 7% 17% (d) 50% (e) 39% (d) 51 maked 1st clifters: Volume in 2009 (27.5) (c) 10% 10% (c) 10% maked 2th; tent formula for yeal. Volume in 2009

Table 55. Selected Slaughter Classes Ranked by Volume (and Percentage) for selected U.S. States (1=Ranked 1st, 2=Ranked 2nd, 3=Ranked 3rd, 4= Ranked 4th, 5= Ranked 5th) in volume Top five U.S. States (*highlighted*)

(b) VT ranked 5th -Bob Veal- Volume in 2009 (5 %) (c) AZ ranked 5th -Dairy Cows- Volume in 2009 (a %)

(d) CO ranked 4th

(f) KS ranked 2th -Non formula ted soal Volume in (f) KS ranked 1st - Steers- Volume in 2009 [22 %] (f) CO ranked 4th -Steers- Volume in 2009 (5%)

[121]

Production Class	Ampiciân	Cefazoin	Chiertetra cyclini;	Desacoty/C eph2prin	Desturoyic efficitur (DCA or DCCD)	: DihydroStrepto MyCi*	Fancin	Geetamyzin Suffatz	omycias Ne	eomycin.	Ozyletracycéne	Pencelin) Piritosycin	Spectino mycir	Strepto	Tetracy: Inc	Tetracycline Recorrend Hol Violative	Timicosia	* Tobramycán	Tulathro Mjón	Tylosin	UNTo	Total
Beel cows	1		9	1	1	1	5			13	37	6				† 	56	5		7			142
Boars /Stags			1			1				1													3
Bob vesi			2	1	-	339	-		1	1,028	62	2	1	11	4	24	73	3	2	3	;	10	1.565
Bulis							1		1	1	11		•		•		16	1		6		- 1	36
Dairy cows	15	1	2	10	37	49	51		3	158	105	204	1	3	10	79	280	14	1	37	4	11	1.075
Formula-fed veal			4							3		1	 :	.			16			1			25
Goats									t					;	!			:	·				
Heavy calves			1		 	1				10	3		<u></u>	1		<u> </u>	5	 1					
Heiters			. 1		; . 1				•	2	3	 · 1	• •	-	• -	ŧ	4			10		-	24
Lambs			-		-							<u> </u>			 								
Market hoos			1					1		9			 		 	1		 					
Mature sheen									- -	,			ļ		1	+ •	12				;		
Non formula fed yeal			·						·				ļ		<u> </u>	<u> </u>		ŀ	·			3	
Deseler size			-			-	-		4	1					:			ļ		•			3
nuesiei pigo		-				 							;	 	<u>-</u>		1	ļ					1
			. 1			;i				1	2					ļ	2		<u>.</u>			24	30
Steers	1		12			1	2	-		11	4	3				ł	14	1		16		2	67
Young turkeys													·	L				:	L			3	3
Total by Residue	17	1	36	12	39	392	59	1	3 1	1,238	227	217	2	15	14	104	480	27	3	83	4	66	3,040
																			TOTAL Non-	Violative	Positive:		3.040

Table 56. Distribution of Non-Violative Positive Residue by Production Class and Chemical Residue 2009 Inspector-Generated Sampling (IG) Results

[122]

Compound Class	COLLGEN	FAST	KIS	SHOW	STATE	Total
Ampicillin	0	8	9	0	0	17
Cefazolin	0	1	0	0	0	1
Chlortetracycline	1	26	7	2	0	36
DesacetylCephaprin	0	8	4	0	0	12
Desfuroylceftiofur(DCAorDCCD)	1	29	9	0	0	39
DihydroStreptomycin	9	85	298	0	0	392
Flunixin	2	27	30	0	0	59
Gentamycin Sulfate	0	1	0	0	0	1
Lincomycin	0	1	2	0	0	3
Neomycin	30	237	968	1	2	1238
Oxytetracycline	3	148	76	0	0	227
Penicillin	2	160	55	0	0	217
Pirlimycin	0	1	1	0	0	2
Spectinomycin	1	1	13	0	0	15
Streptomycin	0	9	5	0	0	14
Tetracycline	0	44	60	0	0	104
Tetracycline Recovered Not Violative	7	330	140	2	1	480
Tilmicosin	2	2	23	0	0	27
Tobramycin	0	0	3	0	0	3
Tulathromycin	4	9	70	0	0	83
Tylosin	0	1	3	0	0	4
UMI's	7	42	16	1	0	66
Total by FSIS IG Project	69	1170	1792	6	3	3040

Table 57. Distribution of Non-Violative Positive Samples by Project ID2009 Inspector-Generated (IG) Sampling

TOTAL Non-Violative Positive:

3,040

[123]

Figure 52. Distribution of Non-Violative Positive Samples by Project ID and Selected Chemical Residue 2009 Inspector-Generated (IG) Sampling

Others: Refer to the chemical compound list in Table 57 (page 97).

[124]

INSPECTOR-GENERATED SAMPLING (Continue)

Suspect Populations

FSIS tested suspect populations in bob veal for antibiotics, sulfonamides, and *beta*-Agonists.

Fast Antimicrobial Screen Test (FAST) on Bob Veal

FSIS field personnel used the FAST test to screen14,046 samples from bob veal calves for antibiotics and sulfonamides. Of the animals tested, FSIS laboratory confirmed 140 violations in 100 animals. The residue violations consisted of one ampicillin, seven desfuroylceftiofur (DCA or DCCD), 16 flunixin, four gentamycin sulfate, 63 neomycin, eight oxytetracycline, seven penicillin, four sulfadiazine, 12 sulfadimethoxine, seven sulfamethazine, and 11 sulfamethoxazole.

Kidney Inhibition Swab (KIS™) Test on Bob Veal

FSIS field personnel used KIS[™] tests to screen 23,427 samples from bob veal calves for antibiotics and sulfonamides. Of the animals tested, FSIS laboratory confirmed 207 violations in 149 animals. The residue violations consisted of three desfuroylceftiofur (DCA or DCCD), 13 flunixin, 28 gentamycin sulfate, 69 neomycin, nine oxytetracycline, four penicillin, one phenylbutazone, two sulfadiazine, six sulfadimethoxine, 12 sulfamethazine, 14 sulfamethoxazole, one sulfathiazole, 16 tetracycline, 11 tilmicosin, and 18 tulathromycin.

Show Animals

FSIS laboratories conducted analyses for antibiotics and sulfonamides on one lamb, nine market hogs, one mature sheep, and six steers. No violations were found.

FSIS laboratories conducted analyses for clenbuterol, salbutamol, ractopamine, and cimaterol (*beta*-agonists) on three bovine, one bull, three heifers, five lamb, nine market hogs, one mature sheep, and 11 steers. No violations were found.

FSIS laboratories conducted analyses for one market hog and one steer for flunixin. No violations were found.

Import Reinspections Results

Normal Reinspection

Table 58 presents results for imported products subject to normal reinspection. The data include the number of analyses, non-detects, non-violative positives, and violations found for each compound class tested.

Country	Species	Туре	Compound Class	Number of Analyses	Number of Non- Detects	Number of Non- Violative Positives	Number of Violations	Specific Compound (Violation)
			Avermectins	14	14			
			Chlorinated	2	2			
Argentina	Beef	Processed	Organophosphates					
			Other Pesticides	3	3			
			Sulfonamides	14	14			
			Antibiotics - 7	89	89			
	-		plate					
			Avermectins	97	97			
			Chloramphenicol	5	5			
	Beef	Fresh	Chlorinated	6	6			
			Organophosphates					
			Florfenicol	6	6			
			Flunixin	18	18			
			Other Pesticides	87	87			
			Sulfonamides	96	96			
	Goat	Fresh	Avermectins	7	7			
	Guat		Other Pesticides	8	8			
			Avermectins	45	45			
	Lamb	Fresh	Chlorinated	5	5			
			Organophosphates					
Australia			Other Pesticides	46	46			
			Avermectins	8	8			
	Mutton	Fresh	Chlorinated	1	1			
			Organophosphates					
			Other Pesticides	10	10			
			Antibiotics - 7 plate	1	1			
	Pork	Fresh	Arsenic	1	1			
			beta-Agonists	1	1			
			Sulfonamides	1	1			
			Avermectins	16	16			
			beta-Agonists	29	29			
	Vaal	Engla	Chloramphenicol	15	15			
	veai	rresn	Sulfonamides	20	20			
			Thyreostats	27	27			
			Zeranol	27	27			

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Country	Species	Туре	Compound Class	Number of Analyses	Number of Non- Detects	Number of Non- Violative Positives	Number of Violations	Specific Compound (Violation)
Chlorinated 6 6 Organophosphates Other Pesticides 42 42 Sulfonamides 62 62 Sulfonamides 62 62 Antibiotics 7-plate 83 83 Avermectins 86 86 Chloramphenicol 7 7 Chlorinated 14 14	Brazil	Beef	Processed	Avermectins	42	41		1	Ivermectin
Organophosphates Other Pesticides 42 42 <				Chlorinated	6	6			
Other Pesticides 42 42		1	E .	Organophosphates					
Sulfonamides 62 62 Antibiotics 7-plate 83 83 Avermectins 86 86 Chloramphenicol 7 7 Chlorinated 14 14 Diganophosphates				Other Pesticides	42	42			
Antibiotics 7-plate 83 83 Avermectins 86 86 Chloramphenicol 7 7 Chlorinated 14 14 Organophosphates				Sulfonamides	62	62			
Avermectins8686Chloramphenicol77Chlorinated1414Organophosphates				Antibiotics 7-plate	83	83			
BeefFreshChloramphenicol77Chlorinated1414Organophosphates				Avermectins	86	86			
Beef Fresh Chlorinated 14 14		1		Chloramphenicol	7	7			
Beef Fresh Organophosphates				Chlorinated	14	14			
		Beef	Fresh	Organophosphates			ł		
FIOTIENICOI 5 5				Florfenicol	5	5			
Flunixin 18 18				Flunixin	18	18			
Other Pesticides 83 83]		Other Pesticides	83	83			
Sulfonamides 85 85			1	Sulfonamides	85	85			
Antibiotics 7-plate 82 82				Antibiotics 7-plate	82	82			
Arsenic 96 96				Arsenic	96	96			
Chloramphenicol 94 94		1		Chloramphenicol	94	94			
Chicken Fresh Chlorinated 3 3		Chicken	Fresh	Chlorinated	3	3			
Organophosphates				Organophosphates		_			
Nitroimidazoles 86 86				Nitroimidazoles	86	86			
Other Pesticides 20 20				Other Pesticides	20	20			
Antibiotics 7-plate 6 6				Antibiotics 7-plate	6	6			
Equine Fresh Other Pesticides 1 1		Equine	Fresh	Other Pesticides	1	1			
Canada Sulfonamides 4 4	Canada			Sulfonamides	4	4			
Avermectins 4 4				Avermectins	4	4			
Lamb Erech Chlorinated 1 1		Lomb	Erech	Chlorinated	1	1			
Organophosphates			riesh	Organophosphates					
Other Pesticides 2 2				Other Pesticides	2	2			
Antibiotics 7-plate 137 137				Antibiotics 7-plate	137	137			
Arsenic 4 4				Arsenic	4	4			
beta-Agonists 6 6				beta-Agonists	6	6			
Pork Fresh Chlorinated 13 13		Pork	Fresh	Chlorinated	13	13			
Organophosphates				Organophosphates					
Other Pesticides 119 119				Other Pesticides	119	119			
Sulfonamides 136 136	I			Sulfonamides	136	136			
Antibiotics 7-plate 7 7				Antibiotics 7-plate	7	7			
Arsenic 8 8				Arsenic	8	8			
Chloramphenicol 8 8				Chloramphenicol	8	8			
Turkey Fresh Chlorinated 1 1		Turkey	Fresh	Chlorinated	1	1			
Organophosphates		-		Organophosphates	-	-			
Other Pesticides 4 4				Other Pesticides	4	4			
Sulfonamides 8 8			{	Sulfonamides	8	8			

Country	Species	Туре	Compound Class	Number of Analyses	Number of Non- Detects	Number of Non- Violative Positives	Number of Violations	Specific Compound (Violation)
			Avermectins	44	44			
			beta-Agonists	71	71			
Canada,	Val	Enab	Chloramphenicol	44	44			
continued	veai	Fresh	Sulfonamides	47	47			
			Thyreostats	65	65			
			Zeranol	70	70			
			Antibiotics 7-plate	8	8			
			Avermectins	7	7			
			Chloramphenicol	7	7			
			Chlorinated	3	3			
1	Beef	Fresh	Organophosphates					
			Florfenicol	8	8			
Chile			Flunixin	8	8			
			Other Pesticides	5	5			
			Sulfonamides	7	7			
			Antibiotics 7-plate	4	4			
	Deute		Arsenic	1	1			
	POTK	Fresh	beta-Agonists	4	4			
			Sulfonamides	1	1			
			Antibiotics 7-plate	6	6			
			Avermectins	53	52	1		
			Chloramphenicol	8	8			
Casta			Chlorinated	1	1			
Rico	Beef	Fresh	Organophosphates					
Rica			Florfenicol	5	5			
			Flunixin	6	6			
			Other Pesticides	4	4			
			Sulfonamides	6	6			
			Chlorinated	1	1			
Croatia	Pork	Processed	Organophosphates					
Cittatia	TOIK	TIOCESSEU	Other Pesticides	5	5			
			Sulfonamides	8	8			
			Antibiotics 7-plate	16	16			
			Arsenic	8	8			
Denmark	Pork	Fresh	beta-Agonists	6	6			
			Other Pesticides	16	16			
			Sulfonamides	17	17			
			Antibiotics 7-plate	5	5			
			Arsenic	6	6			
Finland	Pork	Fresh	beta-Agonists	5	5			
			Other Pesticides	1	1			
			Sulfonamides	6	6			

Country	Species	Туре	Compound Class	Number of Analyses	Number of Non- Detects	Number of Non- Violative Positives	Number of Violations	Specific Compound (Violation)
Commony	Dorle	Desserved	Other Pesticides	7	7			
Germany	POIK	Processed	Sulfonamides	8	8			
			Antibiotics 7-plate	5	5			
			Avermectins	4	4			
			Chloramphenicol	4	4			
Honduras	Beef	Fresh	Florfenicol	4	4			
			Flunixin	4	4			
			Other Pesticides	2	2			
			Sulfonamides	4	4			
Hungary	Pork	Processed	Sulfonamides	8	8			
Looland	Longh	Encel	Avermectins	8	8			
	Lamo	Fresh	Other Pesticides	6	6			
			Antibiotics 7-plate	8	8			
Ireland	Dork	Frank	Arsenic	4	4			
neianu	TOIK	Tiesh	beta-Agonists	8	8			
			Sulfonamides	4	4			
	Chicken	Processed	Arsenic	7	7			
Israel	Turkey	Processed	Arsenic	8	8			
	Тшксу	riocesseu	Sulfonamides	8	8			
			Chlorinated	1	1			
Italy	Pork	Processed	Organophosphates					
Italy	TOIR	Theesseu	Other Pesticides	8	8			
			Sulfonamides	9	9			
			Antibiotics 7-plate	9	9			
			Avermectins	9	9			
			Chloramphenicol	9	9			
Japan	Beef	Fresh	Florfenicol	9	9			
			Flunixin	9	9			
			Other Pesticides	8	8			
			Sulfonamides	9	9			
			Antibiotics 7-plate	8	8			
			Avermectins	8	8			
			Chloramphenicol	8	8			
	Beef	Fresh	Florfenicol	8	8			
			Flunixin	8	8			
Mexico			Other Pesticides	3	3			
			Sulfonamides	8	8			
			Antibiotics 7-plate	1	1			
	Chicken	Fresh	Arsenic	2	2			
	Chicken	1 10011	Chloramphenicol	2	2			
			Nitroimidazoles	1	1			

Country	Species	Туре	Compound Class	Number of Analyses	Number of Non- Detects	Number of Non- Violative Positives	Number of Violations	Specific Compound (Violation)
	Goat	Fresh	Avermectins	6	6			
			Antibiotics 7-plate	5	5			
Ì			Arsenic	3	3			
	Pork	Fresh	beta-Agonists	6	6			
Mexico			Other Pesticides	3	3			
			Sulfonamides	3	3			
			Arsenic	2	2			
	Turkey	Processed	Other Pesticides	1	1			~~-
			Sulfonamides	2	2			
			Antibiotics 7-plate	8	8			
Netherlands	Pork	Frach	Arsenic	7	7			
rectionatios	IUK	110511	beta-Agonists	8	8			
			Sulfonamides	7	7			
			Antibiotics 7-plate	52	52			
			Avermectins	48	48			
			Chloramphenicol	5	5			
			Chlorinated	5	5			
	Beef	Fresh	Organophosphates					
			Florfenicol	5	5			
			Flunixin	7	7			
			Other Pesticides	44	44			
			Sulfonamides	48	48			
	Goat	Fresh	Avermectins	8	8			
			Avermectins	8	8			
New	Lamh	Fresh	Chlorinated	3	3			
Zealand	Lunio	1 10311	Organophosphates					
			Other Pesticides	6	6			
			Avermectins	2	2			
	Mutton	Fresh	Chlorinated	1	1			
		110011	Organophosphates					
			Other Pesticides	11	1			
	ļ		Avermectins	54	54			
1			beta-Agonists	45	45			
	Veal	Fresh	Chloramphenicol	54	54			
			Sulfonamides	53	53			
		T	Thyreostats	42	42			
			Zeranol	45	45			

Country	Species	Туре	Compound Class	Number of Analyses	Number of Non- Detects	Number of Non- Violative Positives	Number of Violations	Specific Compound (Violation)
			Antibiotics 7-plate	6	6			
			Avermectins	8	8			
			Chloramphenicol	7	7			
1			Chlorinated	1	1			
Nicaragua	Beef	Fresh	Organophosphates					
_		1	Florfenicol	6	6			
			Flunixin	7	7			
			Other Pesticides	8	8			
			Sulfonamides	8	8			
			Antibiotics 7-plate	7	7			
Northern	Derle	Encel	Arsenic	2	2			
Ireland	POIK	Fresh	beta-Agonists	7	7			
		ļ	Sulfonamides	2	2			
			Chlorinated	1	1			
Dolond	Daula	Durana	Organophosphates					
Poland	POIK	Processed	Other Pesticides	9	9			
ļ			Sulfonamides	8	8			
			Chlorinated	1	1			
Smain	Doula	Duccess	Organophosphates					
Spain	POIK	Processed	Other Pesticides	9	9			
			Sulfonamides	9	9			
			Antibiotics 7-plate	6	6			
			Arsenic	4	4			
Sweden	Pork	Fresh	beta-Agonists	6	6			
			Other Pesticides	1	1			
			Sulfonamides	4	4			
			Antibiotics 7-plate	8	8			
United	Doule	Encah	Arsenic	8	8			
Kingdom	POIK	Fresh	beta-Agonists	8	8			
			Sulfonamides	8	8			
			Antibiotics 7-plate	38	38			
			Avermectins	37	37			
			Chloramphenicol	1	1			
			Chlorinated	1	1			
Uruguay	Beef	Fresh	Organophosphates					
			Florfenicol	5	5			
			Flunixin	5	5			
			Other Pesticides	10	10			
·			Sulfonamides	38	38			
	Total			3820	3818	1	1	

Increased Reinspection

Table 59 presents the results for import products subject to increased reinspection. The data include the number of analyses, non-detects, non-violative positives, and violations found for each compound class tested by product class.

Table 59. Increased Reinspection Results2009 Import Residue Plan

Country	Species	Туре	Compound Class	Number of Analyses	Number of Non-Detects
New Zealand	Beef	Fresh	Antibiotics 7-plate	3	3
		Total		3	3

Intensified Reinspection

Table 60 presents results for import products subject to intensified reinspection. The data include the number of analyses, non-detects, non-violative positives, and violations found for each compound class tested by product class.

Table 60. Intensified Reinspection Results2009 Import Residue Plan

Country	Species	Туре	Compound Class	Number of Analyses	Number of Non- Detects
Brazil	Beef	Processed	Avermectins	25	25
Canada	Chicken	Fresh	Other Pesticides	2	2
	Pork	Fresh	Other Pesticides	3	3
Costa Rica	Beef	Fresh	Avermectins	19	19
		Total		49	49

APPENDIX I Analytical Methods

.

			Analytical Meth	od	Minimum H	Proficiency Level ¹		
Compound Class	Compound	Screen	Determinative (quantitative)	Confirmatory (identification)	Screen	Determinative (quantitative)	Confirmatory (identification)	
	Carbadox		GC-ECD	GC/MS		15 ppb	30 ppb	
	Chloramphenicol		GC-ECD	GC-MS		0.25 ppb (M)(B)	0.25 ppb (M)(B), 0.30 ppb (M)(T)	
Antibiotics				GC/SIM-MS		0.3 ppm (L)(B) 0.2 ppm (M)(B)	0.5 ppm (L)(B), 0.3 ppm (M)(B)	
	Flortenicol		HPLC	LC/MS/MS		1.5 ppm (P)(L) 0.6 ppm (P)(M)	0.3 ppm (B)(L,M)	
	Amoxicillin					TBD	TBD	
	Ampicillin		Bioassay			0.05 ppm	10 ppb	
	Cefazolin					TBD	50 ppb	
	Cloxacillin					TBD	TBD	
	Desacetyl Cephapirin					TBD	100 ppb	
Antibiotics: <i>beta-</i> Lactams	Ceftiofur (Parent) Desfuroyl Ceftiofur (Marker residue for Quantiation) Desfuroylceftiofur cysteine disulfide (DCCD) (Metabolite For Confirmation)	7-Plate Bioassay	HPLC-UV	HPLC/MS- MS		0.10 ppm	50 ррЪ	
	Dicloxacillin					TBD	TBD	
	Nafcillin					TBD	20 ppb	
	Penicillin-G		Bioassay			0.05 ppm	50 ppb	
	Oxacillin					TBD	TBD	

¹ Minimum Proficiency Level (MPL): The minimum concentration of a residue at which an analytical result will be used to assess a laboratory's quantification capability. This concentration is an estimate of the smallest concentration for which the average coefficient of variation (CV) for reproducibility (i.e., combined within and between laboratory variability) does not exceed 20 percent (9 CFR 318.21).

Method detection limit (MDL): The lowest quantity of residue (or sample component) that can be reliably observed or found in the sample matrix by the analytical methodology used.

		Analytical Method			Minimum Proficiency Level			
Compound Class	Compound	Screen	Determinative (quantitative)	Confirmatory (identification)	Screen	Determinative (quantitative)	Confirmatory (identification)	
Antibiotics: Tetracyclines	Chlortetracycline Oxytetracycline Tetracycline	7-Plate Bioassay	Bioassay	HPLC		0.05 ppm 0.40 ppm	0.5 ppm	
	Clindamycin						0.1 ppm	
	Erythromycin		Bioassay			0.25 ppm	0.1 ppm	
A - 41 - 41	Lincomycin	5 N .					0.1 ppm	
Antibiotics: Macrolides	Pirlimycin	7-Plate Bioassay		HPLC/MS-MS			0.1 ppm	
	Tilmycosin		HPLC-Ion Pairing			300 ppb (M) 600 ppb (L,K)	0.1 ppm	
	Tulathromycin						1 ppm	
	Tylosin		Bioassay			1.0 ppm	0.1 ppm	
	Amikacin						1.0 ppm (L,K), 0.4 ppm (M)	
	Apramycin						0.4 ppm (K), 0.1 ppm (L,M)	
	Dihydrostreptomycin		Bioassay			1.0 ppm	0.4 ppm (L,K,M)	
	Gentamycin		Bioassay			0.5 ppm	0.1 ppm (K,M), 0.4 (L)	
Antibiotics:	Hygromycin	7-Plate				- ·· -	1.0 ppm (L,K), 0.4 ppm (M)	
Aminoglycosides	Kanamycin	Bioassay		HPLC/MS-MS			4.0 ppm(L), 2.0 ppm (K),	
	Neomycin		Bioassay			25.000	0.4 ppm (M)	
	<u> </u>		Dioussiy			<u>-2.5 ppm</u>	$\frac{1}{10}$ ppm (L) 0.4 ppm (K) 0.25 ppm	
	Spectinomycin						(M)	
-	Streptomycin		Bioassay			0.5 ppm	0.4 ppm (L,K,M)	
	Tobramycin						1.0 ppm (L), 0.1 ppm (K,M)	

			Analytical Meth	od	Minimum Proficiency Level				
Compound Class	Compound	Screen	Determinative (quantitative)	Confirmatory (identification)	Screen	Determinative (quantitative)	Confirmatory (identification)		
	Ciprofloxacin								
Antibiotics:	Danofloxacin Desethylene diprofloxacin Desmethyl danofloxacin	7-Plate		HPLC/MS- MS			25 ppb		
Theory unofones	Difloxacin Enrofloxacin Norfloxacin Sarafloxacin								
Arsenicals	Arsenicals		AAS	AAS		0.2 ppm	0.2 ppm		
Avermectins	Ivermectin Doramectin Moxidectin		HPLC	HPLC/APCI- MS		7.5 ррв	25 ррв		
	Cimaterol				3 ppb		3 ppb		
	Clenbuterol			LC/MS/MS	3 ppb		3 ppb		
β-Agonists	Ractopamine	LC/MS/MS	HPLC		21 ppb	1 ppb (M), 25 ppb (L)	25 ррв		
	Salbutamol				3 ppb		3 ррb		
	Zilpaterol				6 ppb		6 ppb		
Dyes	Crystal Violet	ELISA			1 ppb]		
	Leuchocrystal Violet	ELISA			l ppb				
	Leuchomalachite Green	ELISA			1 ppb				
	Malachite Green	ELISA			1 ppb				
Heavy metals	Cadmium			ICP/MS			10 ppb		
Heavy metals	Lead						25 ppb		

.

Compound Class	Compound		Analytical Me	thod	Minimum Proficiency Level		
		Screen	Determinative (quantitative)	Confirmatory (identification)	Screen	Determinative (quantitative)	Confirmatory (identification)
	Diethylstilbesterol (DES)		GC-MS	GC-MS		0.5 ppb	1.0 ppb (L,M)
Hormones,	Zeranol	GC-MS	GC-MS	GC-MS	1.0 ppb	1.0 ppb	1.0 ppb (L,M)
synthetic	alpha-Trenbolone			GC/MS-MS	5.0 ppb		5.0 ppb (L)
	beta-Trenbolone			GC/MS-MS			5.0 ppb (M)
Nitrofirans	Furazolidone	LC/MS-MS			5.0 ppb (L) 1.0 ppb (catfish)		5.0 ppb (L) 1.0 ppb (catfish)
	Furaltadone				5.0 ppb (L) 1.0 ppb (catfish)		5.0 ppb (L) 1.0 ppb (catfish)
Nitroimi-	Hydoxydimetridazole		HPLC	HPLC/MS/MS		1 ppb	1 ppb
dazoles	Hydroxyipronidazole					1 ppb	1 ppb
Non-Steroidal Anti- Inflammatory Drugs (NSAIDs)	Flunixin	ELISA	HPLC/ESI-MS- MS	HPLC/ESI-MS-MS	50 ррв	62.5 ppb (L) 12.5 ppb (M)	62.5 ppb (L) 12.5 ppb (M)
Sulfonamides	Sulfapyridine Sulfadiazine Sulfathiazole Sulfamerazine Sulfamethazine Sulfachloropyridazine Sulfachloropyridazine Sulfadimethoxypyridazine Sulfadimethoxine Sulfadimethoxine Sulfatehoxypyridazine Sulfatroxazole Sulfatroxazole Sulfisoxazole Sulfadoxine		TLC	GC/ESI-MS		0.05 ppm	0.1 ppm

			Analytical Met	hod	Minimum Pr	oficiency Level	
Compound Class	Compound	Screen	Determinative (quantitative)	Confirmatory (identification)	Screen	Determinative (quantitative)	Confirmatory (identification)
	Hexachlorobenzene (HCB)				0.10 ppm	0.10 ppm	
	Heptachlor epoxides				0.10 ppm	0.10 ppm	
	Heptachlor				0.03 ppm	0.10 ppm	
	Kepone				0.06 ppm	0.06 ppm	
	Lindane				0.10 ppm	0.10 ppm	
	Linuron				0.50 ppm	0.50 ppm	
	Methoxychlor				0.50 ppm	0.50 ppm	
[Mirex				0.10 ppm	0.10 ppm	
	Trans-Nonachlor				0.15 ppm	0.15 ppm	
	o,p'-TDE				0.15 ppm		
	o,p'-DDT				0.15 ppm	0.15 ppm	
CHCs/COPs/PCBs	o,p'-DDE	00.000			0.10 ppm		
(continued)	Oxychlordane	GC-ECD	GC-ECD		0.04 ppm	0.04 ppm	
	p,p'-DDE				0.10 ppm	0.10 ppm	
	p,p'-DDT				0.10 ppm	0.15 ppm	
	p,p'-TDE				0.10ppm	0.15 ppm	
	PCB 1260				0.50 ppm	0.50 ppm	
	PCB 1254				0.50 ppm	0.50 ppm	
	Phosalone				0.02 ppm	0.02 ppm	-
	Poly brominated				0.10	· · · · ·	
	biphenyls				0.10 ppm		
	Ronnel				0.03 ppm	0.03 ppm	
	Stirofos				0.04 ppm	0.06 ppm	
	Toxaphene				1.00 ppm	1.00 ppm	
	trans-chlordane				0.04 ppm	0.30 ppm	
Adulterant / Contaminant	Melamine		HPLC-MS-MS	HPLC-MS-MS		50 ppb ground beef 1 ppp RTE	50 ppb ground beef 1 ppp RTE

Key:

AA = Atomic Absorption Spectroscopy APCI = Atmospheric Pressure Chemical Ionization B = BovineCHCs = Chlorinated hydrocarbons COPs = Chlorinated organophosphates ECD = Electron Capture Detection ELISA = Enzyme Linked Immunosorbent Assay GC = Gas Chromatography GPC = Gel Permeation Chromatography HPLC = High Performance Liquid Chromatography K = Kidney L = LiverM = MuscleMS = Mass Spectroscopy P = PoultryPCBs = Polychlorinated biphenyls ppb = parts per billion ppm = parts per million RTE= Ready to eat SIM = selected ion mode TBD = To be determined TLC = Thin Layer Chromatography T = Turkey

APPENDIX II Statistical Table

Statistical Table

Table AII indicates the number of samples required to ensure detection of a violation that affects a given percentage of the sampled population. Statistically, for a binomial distribution with sample size "n" and violation rate "v" (in decimal number), if v is the true violation rate in the population and n is the number of samples, the probability, p, of finding at least one violation among the n samples (assuming random sampling) is: $p = 1 - (1 - v)^n$. Therefore, if the true violation rate is 1% (i.e., 0.01), the probabilities of detecting at least one violation with sampling levels of 230 and 300 are 0.90 and 0.95, respectively.

Percentage % Violative	Probability (p) of detecting at least one violation in (n) samples							
in the Sample (v)	0.90 0.95		0.99	0.999				
	Sample size required "n"							
10	22	29	44	66				
5	45	59	90	135				
1	230	300	459	688				
0.5	460	598	919	1,379				
0.1	2,302	2,995	4,603	6,905				
0.05	4,605	5,990	9,209	13,813				

Table AII. Statistical Table2009 U.S. National Residue Program

Procedure to calculate the required sample size

 $1-p = (1-\nu)^{n}$ $\leftarrow Subtract one from both side of the equation$ $\log(1-p) = \log(1-\nu)^{n}$ $\leftarrow Apply logarithmic function to both side of the equation$ $\log(1-p) = n * \log(1-\nu) \quad \leftarrow A \text{ logarithmic function property}$ $n = \frac{\log(1-p)}{\log(1-\nu)} \quad \leftarrow Sample \text{ size based on violation rate } (\nu) \text{ and probability of detecting } (p)$

APPENDIX III Summary of U.S. NRP Scheduled Sampling Data From 2006 to 2008

•
			An	libiotics (7-j	blate bloassa	y)			
Bunduntin-		CY 2008	1		CY 2007	7		CY 2006	
Class	Number of Analyses	Number of Violations	Specific Antibiotic Violations	Number of Analyses	Number of Violations	Specific Antibiotic Violations	Number of Analyses	Number of Violations	Specific Antibiotic Violations
Beef Cows				316	0		326	0	
Boars/Stags	296	0		364	0		267	0	
Bob Veal	253	1	1 gentamicin				278	11	I gentamicin 9 neomycin 1 oxytetracycline
Bulls	292	0							
Dairy Cows	246	0		318	0		310	4	3 gentamicin 1 penicillin
Ducks	57	0							
Formula- fed Veal	302	0		343	0		323	0	
Geese									
Goats	85	1	l oxytetracycline						
Heavy Calves	100	0		237	1	I oxytetracycline	220	3	1 gentamicin 2 neomycin
Heifers	300	0		302	0		323	0	
Horses				44	0		112	0	
Lambs	251	0							
Market Hogs	323	0							
Mature Chickens		******							

Production		CY 2008			CY 2007			CY 2006		
Class	Number of Analyses	Number of Violations	Specific Antibiotic Violations	Number of Analyses	Number of Violations	Specific Antibiotic Violations	Number of Analyse s	Number of Violations	Specific Antibiotic Violations	
Mature Sheep	62	0								
Mature Turkeys										
Non-formula-fed Veal	102	0		255	3	3 gentamicin	200	6	3 gentamicin 3 neomycin	
Rabbits	57	0								
Roaster Pigs	289	0		249	0		241	0		
Sows	223	0		304	0		300	0		
Steers	318	0								
Young Chickens	296	0		311	0		330	0		
Young Turkeys	294	0		329	0		326	0		

Antibiotics, continued

.

	r					
Production	СУ	2008	СҮ	2007	СҮ	2006
Class	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations
Beef Cows	604	1				
Dairy Cows						
Egg Products						
Market Hogs			291	0	301	0
Mature Chickens			318	0	297	0
Mature Turkeys	328	0				
Young Chickens			297	0	349	0
Young Turkeys						

Arsenic

	· · · · · · · · · · · · · · · · · · ·			······					
Production		CY 2008			CY 2007			CY 2006	
Class	Number of Analyses	Number of Violations	Specific Violations	Number of Analyses	Number of Violations	Specific Violations	Number of Analyses	Number of Violations	Specific Violations
Beef Cows	'								
Boars/Stags	287	1	1 ivermectin					1	
Bulls	272	1	l moxidectin	302	1	1 ivermectin	309	0	
Dairy Cows	'	· '		320	0				
Formula-fed Veal	'	'							
Goats	227	0		240	2	2 moxidectin	240	6	1 ivermectin 5 moxidectin
Heavy Calves	117	1	l doramectin	337	3	1 ivermectin 2 doramectin	234	0	
Heifers	[!	!		305	0		321	0	
Horses				54	0		113	0	
Lambs	287	0		268	0		323	1	1 doramectin
Market Hogs				 '		!			
Mature Sheep	213	0		227	0		249	1	1 ivermectin
Non-formula-fed Veal	99	0		298	2	2 ivermectin	173	1	1 ivermectin
Rabbits	58	/		7					
Sows	311	0							
Steers				303	1	1 ivermectin	313	0	

Avermectins

Production	СҮ	2008	Cĭ	2007	CY	2006
Class	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations
Beef Cows					******	
Bulls						
Bob Veal					224	0
Formula-fed veal			333	0	247	0
Goats	221	0		·		
Heifers			306	0	293	0
Market Hogs	310	0	285	0		
Non-formula- fed Veal	111	0	367	0	175	1 salbutamol
Steers						

beta-Agonists -1-

Zilpaterol was added to the beta-agonist analytical methodology in CY 2008

(Ractopamine)

Production	СҮ	2008	CY	2007	СҮ	CY 2006		
Class	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations		
Beef Cows								
Bulls								
Bob Veal								
Formula-fed Veal			333	0	257	0		
Goats	221	0						
Heifers			306	0	4	0		
Market Hogs	310	0	285	0				
Non-formula-fed Veal	111	0	367	0	201	0		
Steers				*******				

1- Clenbuterol, Salbutamol, Cimaterol, and Zilpaterol

Carbadox

Production Class	CY 2	008	СҮ	2007	CY 2006		
	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations	
Market Hogs	305	1	301	1			
Roaster Pigs	267	3	322	1			

	CY 2	008	СҮ	2007	CY	2006
Production Class	Number of Analyses	Number of Violations/Non- Violative Positives	Number of Analyses	Number of Violations/Non- Violative Positives	Number of Analyses	Number of Violations/Non- Violative Positives
Bob Veal	311	0				
Dairy Cows			335	0	254	0
Formula-fed Veal			341	0	252	0
Heifers	298	0				
Mature Chickens	332	0				
Mature Turkeys	330	0			*-*	•
Non-formula-fed Veal						
Steers	317	0				
Young Chickens			309	0	265	0
Young Turkeys			319	0	266	0

Chloramphenicol

		CY 20()8		CY 2007	7		CY 2006	
Production Class	Number of Analyses	Number of Violations	Specific Violations	Number of Analyses	Number of Violations	Specific Violations	Number of Analyses	Number of Violations	Specific Violations
Beef Cows	282	0		315	0		314	0	
Boars/Stags	236	2	1 hexachloro- benzene, 1 mirex	397	4	l DDT, 2 heptachlor, 1 HCB	284	6	1 halowax 3HCB 1 PBB 1 PBDE,
Bulls									
Dairy Cows	302	0		330	0		304	2	1 dieldrin 1 permethrin
Egg Products									
Formula-fed Veal									
Goats	214	0		264	1	1 chlordane	211	0	
Heavy Calves	117	0							
Heifers	277	0		309	0		333	0	
Horses				50	0		281	1	1 PBDE

Chlorinated Hydrocarbons, Chlorinated Organophosphates, Organophosphates, Pyrethroids, Environmental Contaminants

	·		· · · · · · · · · · · · · · · · · · ·							
Production		CY 2008			CY 200)7		CY 2006		
Class	Number of Analyses	Number of Violations	Specific Violations	Number of Analyses	Number of Violations	Specific Violations	Number of Analyses	Number of Violations	Specific Violations	
Lambs	276	0		246	1	1 methoxychlor	221	0		
Market Hogs										
Mature Chickens										
Mature Sheep	197	0		240	0		208	1	1 PBB	
Mature Turkeys										
Non-formula-fed Veal							203	0		
Roaster Pigs										
Sows	228	0		323	0		286	2	1 HCB 1 PBB	
Steers										
Young Chickens										
Young Turkeys						*****				

Chlorinated hydrocarbons, Chlorinated organophosphates, Organophosphates, Pyrethroids, Environmental contaminants, continued

		Florf	enicol			
Production	СҮ	2008	СҮ	2007	CY 2006	
Class	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations
Beef Cows	206	0				
Bob Veal						
Dairy Cows			373	0	270	0
Formula-fed Veal			340	1		
Mature Chickens	266	0				
Non-formula-fed Veal	63	0	292	4	78	2
Steers						

-				٠		٠		
H.	н	1.	n	¥	v	2	n	
ж.		u	=1		л			

Production	CY 2008		CI	2007	CY 2006	
Class	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations
Beef Cows					306	0
Bob Veal						
Bulls	84	0			232	1
Dairy Cows	90	0			292	4
Heavy Calves					214	0

Melengestrol acetate (MGA)

Production	CY 2008		CY 2	007	CY 2006	
Class	Number	Number	Number	Number	Number	Number
	of	of	of	of	of	of
	Analyses	Violations	Analyses	Violations	Analyses	Violations
Heifers	285	0	309	0	329	0

Nitrofurans

	CY 2008		CY 2007		CY 2006			
Production Class	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations	Specific Nitrofurans Violations	
Dairy Cows	237	0			285	1	l furazolidone	
Formula-fed Veal					257	0		
Heifers					321	0		
Market Hogs	303	0	302	0				
Roaster Pigs			328	0				
Steers								
Sows	295	0	325	0				

Nitroimidazoles

Production Class	CY 2008		СҮ	2007	CY 2006	
	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations
Young Chickens	293	0	306	0		
Young Turkeys					337	0

		CY 2008			CY 2007			CY 2006		
Production Class	Number of Analyses	Number of Violations	Specific sulfonamides Violations	Number of Analyses	Number of Violations	Specific sulfonamides Violations	Number of Analyses	Number of Violations	Specific sulfonamides Violations	
Beef Cows		-		312	0		317	0		
Boars/Stags		-								
Bob Veal	254	1	1 sulfamethoxazole	315	2	1 sulfadimethoxine 1 sulfamethazine	300	3	1 sulfadimethoxine 2 sulfamethazine	
Bulls		-		302	0		297	0		
Dairy Cows	224	0		336	3	1 sulfadimethoxine 2 sulfamethazine	317	3	1 sulfadimethoxine 2 sulfamethazine	
Ducks										
Egg Products										
Formula-fed Veal	<u> </u>						253	0		
Goats	233	-		317	0					
Heavy Calves	122	1	1 sulfamethazine	337	1	1 sulfadimethoxine	222	1	1 sulfamethazine	
Heifers	306	1	1 sulfamethazine							
Lambs	[<u></u>]	-		342	0		· ·			
Market Hogs	223	2	2 sulfamethazine	291	2	2 sulfamethazine	267	1	1 sulfamethazine	
Mature Chickens	334	0								
Mature Sheep				283	0					
Mature Turkeys		-		328	0		261	0		
Non-formula-fed Veal	104	1	1 sulfamethazine	382	2	1 sulfadimethoxine 1 sulfamethazine	165	0		
Roaster Pigs	230	0		327	4	4 sulfamethazine	311	8	1 sulfadimethoxine 7 sulfamethazine	
Sows	314	2	2 sulfamethazine							
Steers	252	0		303	1	1 sulfamethazine	298	1	1 sulfamethazine	
Young Chickens	294	0		297	0					
Young Turkeys				320	1	l sulfaquinoxaline				

Sulfonamides

Table AIII. Summary of U.S. NRP Scheduled Sampling Data from 2006 to 2008

Thyreostats

Production Class	CY 2008		СҮ	2007	CY 2006	
	Number	Number	Number	Number	Number	Number
	of	of	of	of	of	of
	Analyses	Violations	Analyses	Violations	Analyses	Violations
Beef Cows	313	0				
Dairy Cows						
Formula-fed Veal			342	0		
Heifers						
Market Hogs					291	0
Sows						
Steers						

Trenbolone

Production	CY 2008		CY 2	2007	CY 2006	
Class	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations
Formula-fed Veal	93	0	258	0	323	0
Non-formula- fed Veal	97	0			174	2

Zeranol

Production Class	CY 2008		CY 2007		CY 2006	
	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations	Number of Analyses	Number of Violations
Formula-fed Veal	94	0	261	0	323	0
Non-formula-fed Veal	97	0				